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ABSTRACT
The Web provides a corpus of design examples unparalleled
in human history. However, leveraging existing designs to
produce new pages is often difficult. This paper introduces
the Bricolage algorithm for transferring design and content
between Web pages. Bricolage employs a novel, structured-
prediction technique that learns to create coherent mappings
between pages by training on human-generated exemplars.
The produced mappings are then used to automatically trans-
fer the content from one page into the style and layout of an-
other. We show that Bricolage can learn to accurately repro-
duce human page mappings, and that it provides a general,
efficient, and automatic technique for retargeting content be-
tween a variety of real Web pages.
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INTRODUCTION
Designers in many fields rely on examples for inspiration
[17], and examples can facilitate better design work [22].
Examples can illustrate the space of possible solutions and
how to implement those possibilities [2, 3]. Furthermore, re-
purposing successful elements from prior ideas can be more
efficient than reinventing them from scratch [12, 21, 14].

The Web provides a corpus of design examples unparal-
leled in human history: by 2008, Google had indexed more
than one trillion unique URLs [1]. However, we hy-
pothesize that this rich resource is underutilized for design
tasks. While current systems assist with browsing examples
and cloning individual design elements, adapting the gestalt
structure of Web designs remains a time-intensive, manual
process [22, 10].
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Figure 1. Bricolage computes coherent mappings between Web
pages by matching visually and semantically similar page elements.
The produced mapping can then be used to guide the transfer of
content from one page into the design and layout of the other.

Most design reuse today is accomplished with templates
[13]. Templates use standardized page semantics to ren-
der content into predesigned layouts. This strength is also a
weakness: templates homogenize page structure, limit cus-
tomization and creativity, and yield cookie-cutter designs.
Ideally, tools should offer both the ease of templates and the
diversity of the entire Web. What if any Web page could be
a design template?

This paper introduces the Bricolage algorithm for transfer-
ring design and content between Web pages. The term
“bricolage” refers to the creation of a work from a di-
verse range of things that happen to be available. Bricolage
matches visually and semantically similar elements in pages
to create coherent mappings between them. These mappings
can then be used to automatically transfer the content from
one page into the style and layout of the other (Figure 1).

Bricolage uses structured prediction [7] to learn how to
transfer content between pages. It trains on a corpus of
human-generated mappings, collected using a Web-based
crowdsourcing interface, the Bricolage Collector. The Col-
lector was seeded with 50 popular Web pages that were
decomposed into a visual hierarchy by a novel, constraint-



based page segmentation algorithm, Bento. In an online
study, 39 participants with some Web design experience
specified correspondences between page regions and an-
swered free-response questions about their rationale.

These mappings guided the design of Bricolage’s matching
algorithm. We found consistent structural patterns in how
people created mappings between pages. Participants not
only identified elements with similar visual and semantic
properties, but also used their location in the pages’ hier-
archies to guide their assignments. Consequently, Bricolage
employs a novel tree-matching algorithm that flexibly bal-
ances visual, semantic, and structural considerations. We
demonstrate that this yields significantly more human-like
mappings.

This paper presents the Bento page segmentation algorithm,
the data collection study, the mapping algorithm, and the ma-
chine learning method. It then shows results demonstrating
that Bricolage can learn to closely produce human mappings.
Lastly, it illustrates how Bricolage is useful for a diverse set
of design applications: for rapidly prototyping alternatives,
retargeting content to alternate form factors such as mobile
devices, and measuring the similarity of Web designs.

THE BENTO PAGE SEGMENTATION ALGORITHM
To transfer content between Web pages, Bricolage first seg-
ments each page into a hierarchy of salient regions that can
be extracted and manipulated. The page’s Document Ob-
ject Model (DOM) tree, which describes the page’s content,
structure, and style, provides a convenient starting point for
this segmentation [18].

Existing page segmentation algorithms begin by partitioning
the DOM into discrete, visually-salient regions [4, 5, 19].
These algorithms produce good results whenever a page’s
DOM closely mirrors its visual hierarchy, which is the case
for many simple Web pages.

However, these techniques fail on more complex pages.
Modern CSS allows content to be arbitrarily repositioned,
meaning that the structural hierarchy of the DOM may only
loosely approximate the page’s visual layout. In our 50-page
corpus, we found disparities between the DOM and the vi-
sual layout an average of 2.3 times per page. Similarly, in-
lined text blocks are not assigned individual DOM elements,
and therefore cannot be separated from surrounding markup.
In practice, these issues render existing segmentation algo-
rithms poorly suited to real-world Web pages.

This paper introduces Bento, a page segmentation algorithm
that “re-DOMs” the input page in order to produce clean
and consistent segmentations. The algorithm comprises four
stages. First, each inlined element is identified and wrapped
inside a <span> tag to ensure that all page content is con-
tained within a leaf node of the DOM tree. Next, the hier-
archy is reshuffled so that parent-child relationships in the
tree correspond to visual containment on the page. Each
DOM node is labeled with its rendered page coordinates and
checked to verify that its parent is the smallest region that
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Figure 2. Left: The colored boxes illustrate Bento’s segmentation.
Right: Bento’s output tree and associated DOM nodes for this page.

contains it. When this constraint is violated, the DOM is
adjusted accordingly, taking care to preserve layout details
when nodes are reshuffled. Third, redundant and superflu-
ous nodes that do not contribute to the visual layout of the
page are removed. Fourth, the hierarchy is supplemented
to introduce missing visual structures. These structural ele-
ments are added by computing horizontal and vertical sepa-
rators across each page region and inserting enclosing DOM
nodes accordingly, similar to VIPS [4]. At the end of these
four steps, all page content is assigned to a leaf node in the
DOM tree, and every non-leaf node contains its children in
screen space (Figure 2).

Bento is available as a web service and a BSD open-source
C++ library at http://hci.stanford.edu/bento.

COLLECTING AND ANALYZING HUMAN MAPPINGS
Retargeting Web pages is closely related to automatic docu-
ment layout and UI generation. In these domains, the state-
of-the-art is constraint-based synthesis [18, 11], which be-
gins with the designer building an abstract data model for
each individual class of designs. While this strategy works
well in highly-structured domains, the heterogeneous nature
of the Web makes model construction impracticable.

We hypothesized that a more general retargeting scheme
could be produced by training a machine learning algorithm
on human-generated mappings between pages. To this end,
we created the Bricolage Collector, a Web application for
gathering human page mappings from online workers. We
deployed the Collector online, and analyzed the produced
mappings to understand how people map Web pages.

Study Design
We selected a diverse corpus of 50 popular Web pages cho-
sen from the Alexa Top 100, Webby award winners, highly-
regarded design blogs, and personal bookmarks. Within this
corpus, we selected a focus set of eight page pairs. Each par-
ticipant was asked to match one or two pairs from the focus
set, and one or two more chosen uniformly at random from
the corpus as a whole. The Collector gathered data about
how different people map the same pair of pages, and about
how people map many different pairs. We recruited 39 par-
ticipants through email lists and online advertisements. Each
reported some Web design experience.



Figure 3. The Bricolage Collector Web application asks users to
match each highlighted region in the left (content) page to the corre-
sponding region in the right (layout) page.

Procedure
Participants watched a tutorial video demonstrating the Col-
lector interface and describing the task. The video instructed
participants to produce mappings for transferring the left
page’s content into the right page’s layout. It emphasized
that participants could use any criteria they deemed appro-
priate to match elements. After the tutorial, the Collector
presented participants with the first pair of pages (Figure 3).

The Collector interface iterates over the segmented regions
in the content page one at a time, asking participants to find
a matching region in the layout page. The user selects a
matching region via the mouse or keyboard, and confirms
it by clicking the MATCH button. If no good match exists
for a particular region, the user clicks the NO MATCH but-
ton. After every fifth match, the interface presents a dialog
box asking,“Why did you choose this assignment?” These
rationale responses are logged along with the mappings, and
submitted to a central server.

Results
Participants generated 117 mappings between 52 unique
pairs of pages: 73 mappings for the 8 pairs in the focus
set, and 44 covering the rest of the corpus. They aver-
aged 10.5 seconds finding a match for each page region
(min = 4.42s, max = 25.0s), and 5.38 minutes per page
pair (min = 1.52m, max = 20.7m). Participants provided
rationales for 227 individual region assignments, averaging
4.7 words in length.

Consistency
We define the consistency of two mappings for the same
page pair as the percentage of page regions with identical as-
signments. The average inter-mapping consistency of the fo-
cus pairs was 78.3% (min = 58.8%, max = 89.8%). 37.8%
of page regions were mapped identically by all participants.

Rationale
Participants provided rationales like “Title of rightmost body
pane in both pages.” We analyzed these rationales with La-
tent Semantic Analysis (LSA), which extracts contextual
language usage in a set of documents [8]. LSA takes a
bag-of-words approach to textual analysis: each document is
treated as an unordered collection of words, ignoring gram-

mar and punctuation. We followed the standard approach,
treating each rationale as a document and forming the term-
document matrix where each cell’s value counts the occur-
rences of a term in a document. We used Euclidean normal-
ization to make annotations of different lengths comparable,
and inverse document-frequency weighting to deemphasize
common words like a and the.

LSA decomposes the space of rationales into semantic “con-
cepts.” Each concept is represented by a principal compo-
nent of the term-document matrix, and the words with the
largest projections onto the component are the concept’s de-
scriptors.

For the first component, the words with the largest projec-
tions are: footer, link, menu, description, videos, picture, lo-
gin, content, image, title, body, header, search, and graphic.
These words pertain primarily to visual and semantic at-
tributes of page content.

For the second component, the words with the largest pro-
jections are: both, position, about, layout, bottom, one, two,
three, subsection, leftmost, space, column, from, and hori-
zontal. These words are mostly concerned with structural
and spatial relationships between page elements.

Structure and Hierarchy
Two statistics examine the mappings’ structural and hierar-
chical properties: one measuring how frequently the map-
ping preserves ancestry, and the other measuring how fre-
quently it preserves siblings.

We define two matched regions to
be ancestry preserving if their par-
ent regions are also matched (see in-
set). A mapping’s degree of ancestry
preservation is the number of ancestry-
preserving regions divided by the total number of matched
regions. Participants’ mappings preserved ancestry 53.3%
of the time (min = 7.6%, max = 95.5%).

Similarly, we define a set of page re-
gions sharing a common parent to be
sibling preserving if the regions they
are matched to also share a common
parent (see inset). Participants pro-
duced mappings that were 83.9% sibling preserving (min =
58.3%, max = 100%).

COMPUTING PAGE MAPPINGS
The study’s results suggest that mappings produced by dif-
ferent people are highly consistent: there is a “method to the
madness” that may be learned. Moreover, the results sug-
gest that algorithmically producing human-like mappings
requires incorporating both semantic and structural con-
straints, and learning how to balance between them.

Prior work in mapping HTML documents presents two dis-
tinct approaches. The first ignores structural relationships
between DOM nodes and maps elements irrespective of their



locations in the pages’ visual hierarchy [16]. The second
uses tree-matching techniques [20], which strictly preserve
hierarchical relationships: once two nodes have been placed
in correspondence, their descendants must be matched as
well [28, 24, 27]. The results from our study suggest that
neither extreme is desirable.

Bricolage introduces a novel optimization algorithm which
flexibly balances semantic and structural constraints. The al-
gorithm connects the nodes of the two page trees to form a
complete bipartite graph, and for each edge, assigns a cost
comprising three terms. The first term measures visual and
semantic differences between the corresponding page ele-
ments, the second penalizes edges that violate ancestry rela-
tionships, and the third penalizes edges that break up sibling
groups. Determining the best page mapping then reduces to
finding a minimum-cost matching of the constructed graph.
Bricolage uses structured prediction to learn a cost function
under which the set of exemplar mappings are minimal [7].

T1 T2
G

T1 T2
M

Formally, given two page trees with
nodes T1 and T2, we construct a com-
plete bipartite graph G between T1 ∪
{⊗1} and T2 ∪ {⊗2}, where ⊗1 and
⊗2 are no-match nodes. These two no-
match nodes enable the model to track
which nodes in one tree have no coun-
terpart in the other. We then define a
page mapping M to be a set of edges
from G such that every node in T1∪T2

is covered by precisely one edge. In
this paper, given a tree node m, M(m)
denotes its image (i.e., its counterpart
in the other tree). The algorithm as-
signs a cost c(e) to each edge e ∈ M ,
and aggregates them to compute the to-
tal mapping cost c(M) =

∑
e∈M c(e).

Bricolage then searches for the least-
cost mapping M? = argminM c(M).

Exact Edge Costs
We define the cost of an edge e ∈ T1 × T2 to be the sum of
the visual, ancestry, and sibling costs

c(e) = cv(e) + ca(e) + cs(e).

For the edges inG connecting tree nodes to no-match nodes,
we fix the cost c(e) = wn, where wn is a constant no-match
weight. The edge between the two no-match nodes is as-
signed a cost of 0 to prevent it from influencing the final
mapping.

To compute cv([m,n]), the algorithm compares visual and
semantic properties of m and n by inspecting their DOM
nodes. The Learning the Cost Model section describes this
computation in detail.

The ancestry cost ca(·) penalizes edges that violate ancestry
relationships between the pages’ elements. Consider a node
m ∈ T1, and let C(m) denote the children of m. We define
the ancestry-violating children of m, V (m), to be the set of

m n
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e
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Figure 4. To determine the ancestry penalty for an edge e = [m,n],
Bricolage counts the children of m and n which induce ancestry vio-
lations. In this example, n′ is an ancestry-violating child of n because
it is not mapped to a child of m; therefore, n′ induces an ancestry
cost on e.

m’s children that map to nodes that are notM(m)’s children,
i.e.,

V (m) = {m′ ∈ C(m) |M(m′) ∈ T2 r C(M(m))} ,
and define V (n) symmetrically. Then, the ancestry cost for
an edge is proportional to the number of ancestry violating
children of its terminal nodes

ca([m,n]) = wa (|V (m)|+ |V (n)|) ,
where wa is a constant ancestry violation weight (see Fig-
ure 4).

The sibling cost cs(·) penalizes edges that fail to preserve
sibling relationships between trees. To calculate this term,
we first define a few tree-related concepts. Let P (m)
denote the parent of m. Then, the sibling group of a
node m is the set comprising the children of its parent:
S(m) = {C(P (m))}. Given a mapping M , the sibling-
invariant subset of m, I(m), is the set of nodes in m’s sib-
ling group that map to nodes in M(m)’s sibling group, i.e.,

I(m) = {m′ ∈ S(m) |M(m′) ∈ S(M(m))} ;

the sibling-divergent subset of m, D(m), is the set of nodes
in m’s sibling group that map to nodes in T2 not in M(m)’s
sibling group, i.e.,

D(m) = {m′ ∈ S(m) r I(m) |M(m′) ∈ T2} ;

and the set of distinct sibling families that m’s sibling group
maps into is

F (m) =
⋃

m′∈S(m)

P (M(m′)).

We define all corresponding terms for n symmetrically, and
then compute the total sibling cost:

cs([m,n]) = ws

(
|D(m)|

|I(m)||F (m)|
+

|D(n)|
|I(n)||F (n)|

)
,

where ws is a constant sibling violation weight. The two
ratios increase when siblings are broken up (i.e., their images
have different parents), and decrease when more siblings are
kept together (see Figure 5).
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Figure 5. To determine the sibling penalty for an edge e = [m,n],
Bricolage computes the sibling-invariant and sibling-divergent sub-
sets of m and n. In this example, I(n) = {n′} and D(n) = {n′′};
therefore, n′ decreases the sibling cost on e and n′′ increases it.

Bounding Edge Costs
While this cost model balances semantic, ancestral, and sib-
ling constraints, it cannot be used to search for the optimal
mapping M? directly. Although cv([m,n]) can be evaluated
for an edge by inspecting m and n, ca(·) and cs(·) require
information about the other edges in the mapping.

While we cannot precisely evaluate ca(·) and cs(·) a priori,
we can compute bounds for them on a per-edge basis [6].
Moreover, each time we accept an edge [m,n] into M , we
can remove all the other edges incident on m and n from
G. Each time we prune an edge in this way, the bounds for
other nearby edges may be improved. Therefore, we employ
a Monte Carlo algorithm to approximate M?, stochastically
fixing an edge in G, pruning away the other edges incident
on its nodes, and updating the bounds on those that remain.

To bound the ancestry cost of an edge [m,n] ∈ G, we must
consider each child of m and n and answer two questions.
First, is it impossible for this node to induce an ancestry vi-
olation? Second, is it unavoidable that this node will induce
an ancestry violation? The answer to the first question in-
forms the upper bound for ca(·); the answer to the second
informs the lower.

A nodem′ ∈ C(m) can induce an ancestry violation if there
is some edge between it and a node in T2 r (C(n)∪ {⊗2}).
Conversely, m′ is not guaranteed to induce an ancestry
violation if some edge exists between it and a node in
C(n) ∪ {⊗2} . Accordingly, we define indicator functions

1Ua (m′, n) =

{
1 if ∃[m′, n′] ∈ G s.t. n′ 6∈ C(n) ∪ {⊗2}
0 else

,

1La (m′, n) =

{
1 if 6 ∃[m′, n′] ∈ G s.t. n′ ∈ C(n) ∪ {⊗2}
0 else

.

Then, the upper and lower bounds for ca([m,n]) are

Ua([m,n]) =

wa

 ∑
m′∈C(m)

1Ua (m′, n) +
∑

n′∈C(n)

1Ua (n′,m)

 ,
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Figure 6. To bound ca([m,n]), observe that neither m′ nor n′ can
induce an ancestry violation. Conversely, m′′ is guaranteed to vi-
olate ancestry. No guarantee can be made for n′′. Therefore, the
lower bound for ca is wa, and the upper bound is 2wa.

and

La([m,n]) =

wa

 ∑
m′∈C(m)

1La (m′, n) +
∑

n′∈C(n)

1La (n′,m)

 .

Figure 6 illustrates the computation of these bounds. Prun-
ing edges from G causes the upper bound for ca([m,n]) to
decrease, and the lower bound to increase.

Similarly, we can bound cs([m,n]) by bounding the number
of divergent siblings, invariant siblings, and distinct families:
|D(·)|, |I(·)|, and |F (·)|. Let S̄(m) = S(m) r {m} and
consider a node m′ ∈ S̄(m). It is possible that m′ is in
D(m) as long as some edge exists between it and a node in
T2 r (S̄(n) ∪ {⊗2}). Conversely, m′ cannot be guaranteed
to be in D(m) as long as some edge exists between it and a
node in S̄(n) ∪ {⊗2}. Then, we have

1UD(m′, n) =

{
1 if ∃[m′, n′] ∈ G s.t. n′ 6∈ S̄(n) ∪ {⊗2}
0 else

,

UD(m,n) =
∑

m′∈S̄(m)

1UD(m′, n),

and

1LD(m′, n) =

{
1 if 6 ∃[m′, n′] ∈ G s.t. n′ ∈ S̄(n) ∪ {⊗2}
0 else

,

LD(m,n) =
∑

m′∈S̄(m)

1LD(m′, n).

The bounds for |I(m)| are similarly given by

1UI (m′, n) =

{
1 if ∃[m′, n′] ∈ G s.t. n′ ∈ S̄(n)
0 else

,

UI(m,n) = 1 +
∑

m′∈S̄(m)

1UI (m′, n),
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Figure 7. To bound cs([m,n]), observe that m′ is guaranteed to be
in I(m), and m′′ is guaranteed to be in D(m). No guarantees can
be made for n′ and n′′. Therefore, the lower bound for cs is ws/4,
and the upper bound is 3ws/4.

and

1LI (m′, n) =

{
1 if ∀[m′, n′] ∈ G, n′ ∈ S̄(n)
0 else

,

LI(m,n) = 1 +
∑

m′∈S̄(m)

1LI (m′, n).

For all nonzero sibling costs, the lower bound for |F (m)|
is 2 and the upper bound is LD(m,n) + 1. All remaining
quantities are defined symmetrically. Then, upper and lower
bounds for cs([m,n]) are given by

Us([m,n]) =
ws

2

(
UD(m,n)

LI(m,n)
+
UD(n,m)

LI(n,m)

)
and

Ls([m,n]) =

ws

(
LD(m,n)

UI(m,n) (LD(m,n) + 1)
+

LD(n,m)

UI(n,m) (LD(n,m) + 1)

)
.

Figure 7 illustrates these computations.

With bounds for the ancestry and sibling terms in place, up-
per and lower bounds for the total edge cost may be triv-
ially computed as cU (e) = cv(e) + Ua(e) + Us(e) and
cL(e) = cv(e) + La(e) + Ls(e).

Approximating the Optimal Mapping
To approximate the optimal mappingM∗, we use the Metropo-
lis algorithm [23]. We represent each matching as an ordered
list of edges M , and define a Boltzmann-like objective func-
tion

f(M) = exp [−β c(M)] ,

where β is a constant. At each iteration of the algorithm, a
new mapping M̂ is proposed, and becomes the new refer-
ence mapping with probability

α(M̂ |M) = min

(
1,
f(M̂)

f(M)

)
.

The algorithm runs for N iterations, and the mapping with
the lowest cost is returned.

To initialize M , the bipartite graph G is constructed and the
edge bounds initialized. Then, the edges in G are traversed
in order of increasing bound. Each edge is considered for as-
signment to M with some fixed probability γ, until an edge
is chosen. If the candidate edge can be fixed and at least
one complete matching still exists, it is appended to M , the
other edges incident on its terminal nodes are pruned, and
the bounds for the remaining edges in G are tightened.

To propose M̂ , we choose a random index j ∈ [1, |M |].
Then, we re-initialize G, and fix the first j edges in M . To
produce the rest of the matching, we repeat the iterative edge
selection process described above. In our implementation,
we take γ = .7 and N = 100; β is chosen on a per-domain
basis, based on the size of the trees.

LEARNING THE COST MODEL
While this mapping algorithm can be used with any visual
and semantic cost model and weightswn,wa, andws, Brico-
lage seeks to learn a model that will produce human-like
mappings. It employs a feature-based approach to compute
the visual and semantic cost cv(·) between nodes, and trains
the weights of these features and those for the no-match, an-
cestry, and sibling terms.

Edge Features
The algorithm computes a set of visual and semantic proper-
ties for each node in the page trees. Visual properties are
computed using a node’s render-time appearance, and in-
clude attributes like width, font size, and mean RGB val-
ues. Semantic properties take Boolean values, computed by
attribute tests such as “is an image” or “is contained in the
header.” The Appendix gives a full list of these properties.

To compute an edge’s total cost, the algorithm first calcu-
lates the difference between each property for m and n, and
concatenates these values—along with the exact ancestry
and sibling costs and a Boolean no-match indicator—into
a feature vector fe. Given a set of weights wf for each vi-
sual and semantic feature, the edge cost is then computed as
c(e) = w̄T fe, where w̄ = 〈wf , wa, ws, wn〉.

Given a mapping M , the algorithm assembles an aggregate
feature vector FM =

∑
e∈M fe to calculate c(M) = w̄TFM .

Training the cost model then reduces to finding a set of
weights under which the mappings in the training set have
minimal total cost.

Generalized Perceptron Algorithm
To learn a consistent assignment for the weight vector w̄ un-
der which the set of exemplar mappings are minimal, Brico-
lage uses the generalized perceptron algorithm for structured
prediction [7].

The perceptron begins by initializing w̄0 = 0. In each sub-
sequent iteration, the perceptron randomly selects a pair
of page trees and an associated human mapping M from
the training set. Next, using the current weight vector
w̄i, it computes a new mapping M̂ ≈ argminM w̄T

i FM .
Based on the resultant mapping, a new aggregate feature
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Figure 8. A current limitation of the content transfer algorithm il-
lustrating the challenges of HTML/CSS. The target page’s CSS pre-
vents the bounding beige box from expanding. This causes the text
to overflow (synthesized page). Also, the target page expects all
headers to be images. This causes the “About Me” header to dis-
appear (synthesized page). An improved content transfer algorithm
could likely address both of these issues.

vector FM̂ is calculated, and the weights are updated by
w̄i+1 = w̄i + αi

(
FM̂ − FM

)
, where αi = 1/

√
i+ 1 is the

learning rate.

The perceptron algorithm is only guaranteed to converge if
the training set is linearly separable; in practice, it produces
good results for many diverse data sets [7]. Since the weights
may oscillate during the final stages of the learning, the fi-
nal cost model is produced by averaging over the last few
iterations.

CONTENT TRANSFER
Once a cost model is trained, it is fed to the matching algo-
rithm, which uses it to predict mappings between any two
pages. Bricolage then uses these computed mappings to au-
tomatically transfer the content from one page into the style
and layout of another. In its segmented page representation,
page content (text, images, links, form fields) lives on the
leaf nodes of the page tree. Before transferring content, the
inner HTML of each node in the source page is preprocessed
to inline CSS styles and convert embedded URLs to absolute
paths. Then, content is moved between mapped nodes by re-
placing the inner HTML of the target node with the inner
HTML of the source node.

Content matched to a no-match node can be handled in one
of two ways. In the simplest case, unmatched source nodes
are ignored. However, if important content in the source
page is not mapped, it may be more desirable to insert the
unmatched node into the target page parallel to its mapped
siblings, or beneath its lowest mapped ancestor.

This approach works well for many pages. Occasionally,
the complexity and diversity of modern Web technologies
pose practical challenges to resynthesizing coherent HTML.
Many pages specify style rules and expect certain markup
patterns, which may cause the new content to be rendered
incorrectly (Figure 8). Furthermore, images and plugin ob-
jects (e.g., Flash, Silverlight) have no CSS style informa-
tion that can be borrowed; when replaced, the new content
will not exhibit the same visual appearance and may seem
out of place. Lastly, embedded scripts are often tightly cou-
pled with the original page’s markup and break when naı̈vely
transferred. Consequently, the current implementation ig-
nores them, preventing dynamic behavior from being bor-
rowed. A more robust content transfer algorithm is required
to address these issues and remains future work.

RESULTS
We demonstrate the efficacy of Bricolage in two ways. First,
we show several practical examples of Bricolage in action.
Second, we evaluate the machine learning components by
performing a hold-out cross-validation experiment on the
gathered human mappings.

Examples
Figure 10 demonstrates the algorithm in a rapid prototyp-
ing scenario, in which an existing page is transformed into
several potential replacement designs. Creating multiple al-
ternatives facilitates comparison, team discussion, and de-
sign space exploration [9, 15, 25]. Figure 11 demonstrates
that Bricolage can be used to retarget content across form
factors, showing a full-size Web page automatically mapped
into two different mobile layouts.

Figure 9 illustrates an ancillary benefit of Bricolage’s cost
model. Since Bricolage searches for the optimal mapping
between pages, the returned cost can be interpreted as an ap-
proximate distance metric on the space of page designs. Al-
though the theoretical properties of this metric are not strong
(it satisfies neither the triangle inequality nor the identity of
indiscernibles), in practice it may provide a useful mecha-
nism for automatically differentiating between pages with
similar and dissimilar designs.

Machine Learning Results
To test the effectiveness of Bricolage’s machine learning
components, we ran a hold-out test. We used the 44 col-
lected mappings outside the focus set as training data, and

Most DissimilarMost Similar

Figure 9. Bricolage can be used to induce a distance metric on the space of Web designs. By mapping the leftmost page onto each of the
pages in the corpus and examining the mapping cost, we can automatically differentiate between pages with similar and dissimilar designs.



Figure 10. Bricolage used to rapidly prototype many alternatives. Top-left: the original Web page. Rest: the page automatically retargeted to
three other layouts and styles.

Figure 11. Bricolage can retarget Web pages designed for the desktop to mobile devices. Left: the original Web page. Right: the page
automatically retargeted to two different mobile layouts.



the mappings in the focus set as test data. The perceptron
was run for 400 iterations, and the weight vector averaged
over the last 20. The learned cost model was used to predict
mappings for each of the 8 focus pairs. Table 1 shows the
comparison between the learned and reference mappings us-
ing three different metrics: average similarity, nearest neigh-
bor similarity, and percentage of edges that appear in at least
one mapping.

The online mapping experiment found a 78% inter-mapping
consistency between the participants. This might be con-
sidered a gold standard against which page mapping algo-
rithms are measured. Currently, Bricolage achieves a 69%
consistency. By this measure, there is room for improve-
ment. However, Bricolage’s mappings overlap an average
of 78% with their nearest human neighbor, and 88% of the
edges generated by Bricolage appear in some human map-
ping.

This structured prediction approach was motivated by the
hypothesis that ancestry and sibling relationships are crucial
to predicting human mappings. We tested this hypothesis
by training three additional cost models containing different
feature subsets: visual terms only, visual and ancestry terms,
and visual and sibling terms. Considering only local features
yields an average nearest neighbor match of 53%; mapping
with local and sibling features yields 67%; mapping with
local and ancestry features yields 75%. Accounting for all
of these features yields 78%, a result that dominates that of
any subset. In short, flexibly preserving structure is crucial
to producing good mappings.

IMPLEMENTATION
Bricolage’s page segmentation, mapping, and machine learn-
ing libraries are implemented in C++ using the Qt frame-
work, and use Qt’s WebKit API in order to interface directly
with a browser engine. Once a cost model has been trained,
Bricolage produces mappings between pages in about 1.04
seconds on a 2.55 Ghz Intel Core i7, averaging roughly 0.02
seconds per node.

The corpus pages are archived using the Mozilla Archive
File Format and hosted on a server running Apache. For
efficiency, page segmentations and associated DOM node
features are computed and cached for each page when it
is added to the corpus. Each feature has its own dynamic
plug-in library, allowing the set of features to be extended
with minimal overhead, and mixed and matched at runtime.
The Bricolage Collector is written in HTML, Javascript, and
CSS. Mapping results are sent to a centralized Ruby on Rails
server and stored in a SQLite database.

CONCLUSIONS AND FUTURE WORK
This paper introduced the Bricolage algorithm for automat-
ically transferring design and content between Web pages.
Bricolage’s major algorithmic insight was a technique for
capturing the structural relationships between elements, and
using an optimization approach to balance local and global
concerns. This work takes a first step towards a powerful
new paradigm for example-based Web design, and opens up
exciting areas for future research.

Table 1. Results of the hold-out cross-validation experiment. Brico-
lage performs substantially worse without both the ancestry and sib-
ling terms in the cost model.

The current prototype employs thirty visual and semantic
features. Adding more sophisticated properties—such as
those based on computer vision techniques—will likely im-
prove the quality of the machine learning.

Future work could extend example-based design to other do-
mains. The current Bricolage implementation is HTML spe-
cific. In principle, the retargeting algorithm can be applied
to any document with hierarchical structure such as slide
presentation and vector graphics files. With richer vision
techniques (along the lines of [26]), the Bricolage approach
might extend to documents and interfaces without accessible
structure.

Finally, an important next step is to create a retargeting de-
sign tool that allows both novice and experts to more cre-
atively use examples. Observing how people use such a tool
will provide valuable research knowledge about the role ex-
amples can play in amplifying creativity.
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APPENDIX
The Bricolage prototype uses the following DOM properties
as features in the learning.

The visual properties include: width, height, area, aspectRa-
tio, fontSize, fontWeight, meanColor, numLinks, numCol-
ors, numChildren, numImages, numSiblings, siblingOrder,
textArea, wordCount, treeLevel, verticalSidedness (normal-
ized distance from the horizon of the page), horizontalSid-
edness (normalized distance from the midline of the page),
leftSidedness (normalized distance from the left border of
the page), topSidedness (normalized distance from the top
border of the page), and shapeAppearance (the minimum of
the aspect ratio and its inverse).

The semantic properties include: search, footer, header, im-
age, logo, navigation, bottom (if the node is in the bottom
10% of the page), top (if the node is in the top 10% of the
page), fillsHeight (if the node extends more than 90% down
the page), and fillsWidth (if the node extends more than 90%
across the page).


