
The Dog Programming Language
Salman Ahmad

Massachusetts Institute of Technology
saahmad@mit.edu

Sepandar D. Kamvar
Massachusetts Institute of Technology

sdkamvar@mit.edu

ABSTRACT
Today, most popular software applications are deployed in
the cloud, interact with many users, and run on multiple
platforms from Web browsers to mobile operating systems.
While these applications confer a number of benefits to their
users, building them brings many challenges: manually man-
aging state between asynchronous user actions, creating and
maintaining separate code bases for each desired client plat-
form and gracefully scaling to handle a large number of con-
current users. Dog is a new programming language that
provides an elegant solution to these challenges and others
through a unique runtime model. The Dog runtime makes
it possible to model scalable cross-client applications as an
imperative control-flow — drastically simplifying many de-
velopment tasks. In this paper we describe the key features of
Dog and show its utility through several applications that are
difficult and time-consuming to write in existing languages,
but are simple and easily written in Dog in a few lines of
code.

Author Keywords
Programming Languages; Application Development

ACM Classification Keywords
D.3.3. Programming Languages: Language Constructs and
Features; H.5.0.Information Interfaces and Presentation

INTRODUCTION
In the last few years, we have seen an unprecedented growth
of the Internet and of mobile devices. Over two billion peo-
ple now use broadband Internet, up from 50 million a decade
ago [3]. And just six years after the original iPhone was in-
troduced, half of Americans own a smartphone [29], and over
a quarter of Americans use their phone as their primary Inter-
net device [28]. Consequently, many modern software appli-
cations are deployed in the cloud, interact with many users,
and run on multiple client platforms such as Web browsers,
iOS, and Android.

Unfortunately, these applications are difficult to design, build,
and maintain [19]. The interactive applications enabled by
modern Javascript and mobile operating systems are inher-
ently stateful, and running them over a stateless protocol like

Submitted for review.

define chat_with: user as: username do
forever do

listen to user for messages
on message do

message = username + ": " + message
notify: "chatroom" of: message

end
end

end

define pick_username_for: user do
listen to user for usernames
on username do

return username
end

end

listen to anyone for entrances
on each entrance do

user = person from entrance
username = pick_username_for: user
chat_with: user as: username

end

Figure 1. Dog makes it easy to build social applications. This example
shows how to create a real-time chatroom application.

HTTP requires developers to resort to various tricks to man-
age state between asynchronous web requests. Some of these
tricks include: sessions, cookies, and most prominently, map-
ping application logic onto a persistent data model. This man-
ual bookkeeping drastically increases the complexity of oth-
erwise straightforward applications.

For mobile applications in particular, much of the interaction
code ends up being shifted to the client. This further obscures
an application’s underlying logic, which is now split between
the server and the client, and requires new code to be written
for each client platform.

The consequence of all of this is that programs that are con-
ceptually simple and easily described even by the nonpro-
grammer often require sophisticated architectures, the use of
advanced programming techniques, and careful planning to
implement in practice. This is particularly true for those pro-
grams (and parts of programs) that encode interaction flows
and social processes.

We developed Dog to address the disconnect between the
needs of these programs and the capabilities of current pro-
gramming systems. Dog is a new dynamically-typed pro-
cedural programming language that simplifies creating in-
teractive, multi-user, and cross-client software applications
through two key contributions:

1

1. Dog allows server-side code to be written as an imperative
control flow that spans multiple requests and shields devel-
opers from HTTP’s statelessness.

2. Dog facilitates cross-client development by allowing
server-side logic to control client-side interactions through
a scripting protocol that minimizes code duplication while
enabling developers to take advantage of platform-specific
UI affordances.

Together, these two features allow programs that take hun-
dreds of lines of code in current languages to be written in
just a few lines of Dog code, without sacrificing performance
or scalability. To achieve this, we built a unique runtime en-
vironment for Dog that incorporates three core features:

1. An asynchronous execution model that allows complex
event-driven code to be written in a structured and impera-
tive manner.

2. A concurrency model that features lightweight threading
constructs called tasks, which are managed by the runtime,
enforce immutable memory semantics, and are backed by
persistent continuations so they can pause indefinitely.

3. A distributed runtime model that allows a program’s exe-
cution to be run across multiple machines.

We begin this paper by describing the two core principles be-
hind Dog: Workflow-Centric Programming and Server-Client
Scripting. We then provide an overview of Dog’s syntax,
and demonstrate Dog’s utility through several diverse appli-
cations. Then, we describe the details of the Dog runtime and
provide a technical overview of its reference implementation,
which compiles to JVM bytecode and is available under an
Apache 2.0 license. Lastly, we present a user study evaluating
Dog’s usability in addition to benchmark tests of its runtime
performance.

WORKFLOW-CENTRIC PROGRAMMING

Conventional Approach: Manual State Management
Conventional cloud-deployed applications break up logic
across multiple asynchronous URL handlers. Developers
specify server-side logic that is executed in response to an
incoming URL request. For example, PHP associates logic
with a URL by placing a PHP script at a matching file sys-
tem path while Java Servlets and Ruby Rack-based applica-
tions (including the popular Rails framework) use a more so-
phisticated routing mechanism that pairs a URL pattern with
a handler object. We refer to this style of programming as
resource-centric programming (Figure 2b).

This style of server-side programming plays a specific and
limited role: it inspects incoming HTTP requests and pro-
duces an HTTP response. Multistep logic that spans multiple
requests needs to manually store state so that the relevant in-
formation is available during a future request-response cycle
(Figure 2b shows an example using sessions). This manual
bookkeeping complicates many development tasks, for ex-
ample, ensuring confirmation before changing a user’s email
address, choosing a different billing method before making

(a) Pseudocode

(c) Workflow-Centric Code (Dog)

(b) Resource-Centric Code (Ruby + Sinatra)

Allow a user to try to login. If the password does not
match, then give them 3 more chances before suggesting
that they submit a 'Forgotten Password' request.

 1 get "/login" do
 2 session.delete("login_tries")
 3 render "login_form.html"
 4 end
 5
 6 post "/login" do
 7 user = params["user"]; password = params["pass"]
 8 if authenticate(user, password) then
 9 session["user"] = user
 10 session.delete("login_tries")
 11 redirect_to("/dashboard")
 12 else
 13 if session["login_tries"] == nil then
 14 session["login_tries"] = 0
 15 end
 16 session["login_tries"] += 1
 17
 18 if session["login_tries"] >= 3 then
 19 redirect_to("/forgot_password")
 20 else
 21 flash["message"] = "Wrong password. Please try again."
 22 render "login_form.html"
 23 end
 24 end
 25 end
 26

 1 listen to everyone for logins
 2
 3 on each login do
 4 user = person from login
 5 repeat 3 times
 6 if user: login.user has_password: login.pass then
 7 signin: login.user
 8 show_dashboard_for: user
 9 else
 10 message = "Wrong password. Try again."
 11 show message to user
 12 listen to user for logins
 13 on login do
 14 user = person from login
 15 end
 16 end
 17 end
 18 reset_password_for:user
 19 end

Figure 2. Server-side code to implement login logic. Workflow-centric
programming allows for code to be written as a straightforward imper-
ative control flow. State is manage implicitly by the program’s execution
using familiar techniques like control structures and local variables. In
resource-centric programming, state between individual server requests
is manually preserved by storing data in the session.

an online purchase, or viewing the next page from paginated
results.

Dog: Automatic State Management
Instead of writing code as a series of URL endpoints, Dog ap-
plications are written as imperative control flows that directly
represent the user interaction flow across multiple request-
response cycles. Developers rely on familiar state man-
agement features like local variables, condition statements,
loops, and functions. State is implicitly captured by the
program’s execution and developers are afforded compila-
tion warnings, stack-based debugging, well-defined function
APIs, as well as easier ways to write test cases. We refer to

2

this style of programming as workflow-centric programming
(Figure 2c).

Workflow-centric programming is a natural and familiar way
to write applications and allows developers to focus on the
interactions they want to create rather than low-level tech-
nical details. In fact, many designers and programmers al-
ready use workflows as a prototyping tool to describe an ap-
plication’s intended behavior [17]. To confirm our intuition
that workflow-centric programming is a good fit for Web pro-
gramming, we ran a simple study asking participants which
of two pseudocode implementations of a popular online ser-
vice they preferred. One implementation was written using
a workflow-centric programming model and the other was
resource-centric. The service described in the study included
YouTube, ZipCar, and Tumblr. Participants overwhelmingly
preferred the workflow-centric model by a margin of 21 to 2.

Operationally, workflow programming is similar to console-
based programming. Instead of calling print and
readLine to send and receive data from a terminal, Dog
developers use Dog’s built-in show and listen commands
to send and receive data to a Web-accessible API. The show
command (Figure 2c line 11) makes a particular variable vis-
ible to the client, and the listen command (Figure 2c lines
1 and 12) opens a “channel” that clients can use to send data
back into the program.

A program can open multiple channels and selectively wait
until information is sent using the on block (Figure 2c line
13). Execution will stop when it reaches an on block and
wait for a message to be sent over the specified channel. In
certain cases, it is convenient to delegate work to a handler
to avoid complicating the application’s primary control flow.
To address this, Dog includes the on each block (Figure 2c
line 3), which “forks” the program when data arrives over a
channel.

Authentication and security are built into listen and show.
Both commands accept a predicate1 that designates which
users can view the shown data or send input on the listen’s
channel (Figure 2c line 1 shows an example where anyone is
allowed to login). By default, a client is assumed to be an
anonymous user. Users are logged into the system when the
application calls the signin: function (Figure 2c line 7).

Dog’s workflow-centric programming model provides a
structured approach for managing state that helps to eluci-
date application logic and reduce informal state management
conventions that require additional code. The resulting code
is not only more writable, but also more understandable.

SERVER-CLIENT SCRIPTING
With the rise of mobile OSes, developers are increasingly
deploying native client applications on multiple platforms.
While most of the client applications are often similar, they
currently need to be reimplemented for each platform.

With Dog, an application’s high-level logic is written server-
side rather than client-side. Clients connect to the server and

1Predicates are discussed later in the syntax section.

Client Library

 1 <script id="login" type="text/x-dog-template">
 2 <h3>Please Login</h3>
 3 {{#listenForm listens.login}}
 4 <input type="text" name="login">
 5 <input type="password" name="pass">
 6 <input type="submit" name="submit" value="Log In">
 7 {{/listenForm}}
 8 </script>

D
og

 A
P

I

UI

User input events are
captured by client libraryJSON Request

12

3 4

5
6 UI

The view that triggered the
request is updated

Templates

Select template based on
function name

Templates

Select template based on
function name

Templates

Select template based on
function name

Render Template

Render template based
on displayed and listened data

JSON Response
{
 function_name:"login"
 displays: ...
 listens: ...
}

Figure 3. Dog’s client-side libraries are built around templates. Here,
we show the Javascript client library. Developers create templates using
Handlebars.js but other templating languages are supported as well.

the server “tells” the client what they should do and when
they should do it. Communication between the client and the
server is done through a server-client scripting protocol that
exposes what a program has shown and listened for.

Dog’s model provides a clean separation between back-end
business logic and front-end design. The client has complete
control over the application’s aesthetics and is free to leverage
platform-specific UI features and design conventions. How-
ever, the client is not burdened with reimplementing the ap-
plication’s high level interaction and navigational flows. We
felt that this was a sensible separation of concerns that re-
duces duplicated code while providing engaging experiences
on a variety of platforms.

Server-client scripting is also a key differentiating feature
from Web frameworks like Seaside, Tir, and Cocoon that use
continuation passing style for processing requests [23, 26,
30]. These frameworks provide a similar model to workflow-
centric programming but return HTML intended only for Web
browsers. Furthermore, browsers can only send data back
to the server through special form tags that force the entire
screen to be re-rendered.

In terms of its implementation, the server-client-scripting pro-
tocol is built on top of a JSON-based RESTful API. The API
allows clients to inspect the runtime state of any task2 in a
Dog program that is waiting for user input. Tasks are identi-
fied by a special 128-bit id, but if the client is connecting for
the first time, it asks the API for a special root task, which
corresponds to the top-level scope in the Dog program. The
server responds with the name of the current function that
the task is waiting in, the data that the function wants the
client to show (specified by show) and the inputs that the
2Tasks are a special concurrency construct in Dog and are discussed
in the Runtime section.

3

function wants back from the user (specified by listen).
When the client sends input to the API, the API passes that
data into the task and continues its execution until the task
waits again. The API then returns the new state of the task
to the client, which likely contains a new set of shows and
listens (Figure 3).

To further simplify development, Dog provides a series of
client libraries to automatically talk to the API. The official
client libraries included in the Dog distribution are avail-
able for Web browsers (Javascript), iPhone, and Android.
These libraries are primarily template based. Whenever the
client library gets a response, it inspects the “function name”
field (Figure 3) and automatically renders an associated tem-
plate. If no template is available, the client library will auto-
generate one based on the information that has been shown
and listened. Thus, client-side development only requires
developers to create a template for the functions they define in
their program. Of course, developers are not restricted to only
using templates and can opt to use the API directly. However,
this is considered an advanced use case.

Server-client scripting is primarily intended for interactive
portions of Web applications. Browser-based Dog applica-
tions are typically “single-page apps” - they redraw them-
selves by updating their DOM with Javascript instead of nav-
igating to new pages. This does complicate certain tasks like
server-side cacheing and search engine visibility.

SYNTAX

Overview
Our goal in designing Dog’s syntax was to make it possible to
write code that is understandable even to a non-programmer
who has never seen Dog. In practice, this meant design-
ing a syntax that allows and encourages English-like read-
ability [21], minimizes intimidating punctuation [20] and in-
cludes built-in libraries and language constructs that are al-
ready easy-to-read.

A hallmark feature of Dog’s syntax is its use of named pa-
rameters with functions, a feature popularized by Smalltalk
[7]. The definition of the “substring” function in Dog looks
like:

define substring: str from: start to: finish do
...

end

The argument names are actually part of the function
name itself. Thus, the function above is actually called
substring:from:to:. This allows the definition of an-
other substring function with different semantics in an un-
ambiguous way. For example, it is possible to have another
substring function called substring:from:length:.

Calling a function requires specifying all of the arguments:

hello = substring: "Hello, World" from: 0 to: 5

While this syntax may seem verbose, it is designed to be un-
derstandable. Other languages may use:

substring("Hello, World", 0, 5)

In this case, it is unclear if the “5” is the length of the sub-
string or the ending syntax. Dog’s function invocation is un-
ambiguous.

Dog’s data model has four built in primitive types: nulls,
booleans, numbers, and strings. Values can be assigned to
variables using the equals operator. Primitives can be grouped
into a composite data type called structures. Structures are
dynamic containers for key-value pairs. They can be nested
and have either strings or numbers as keys. A structure’s con-
tents can be accessed using both the “dot” and “bracket” op-
erators (similar to Javascript objects). Dog does not have an
explicit array data type, however, since the keys of a structure
can be numbers, structures can be used to store array infor-
mation.

my_struct = {
string = "String Value"
number = 3.14159

}

my_struct.string == my_struct["string"] # true

All values in Dog are immutable and there are no shared vari-
able references in the language. Consequently, the only data a
Dog function can access are its arguments and all arguments
follow “pass-by-value” semantics. This is an important fea-
ture of Dog that supports concurrent programming and is dis-
cussed at length later in the paper.

Almost every Web application incorporates the use of a
database of some sort [24, 6, 9, 19]. While Dog eliminates
shared variable references, modeling applications around a
centralized data store is common in practice. Therefore, as an
added convenience, Dog features “collections”. Collections
are globally scoped containers that hold structures. They can
be thought of as a database but do not require pre-defined
columns and can hold structures of any structure type. Since
there are no shared variable references, a value in a collection
does not change until the program explicitly re-saves it.

The example below shows the basic usage for collections in
Dog:

define collection games

sonic = {
title = "Sonic The Hedgehog"
platform = "Genesis"

}

insert: sonic into: games

To query collections, Dog has built-in syntactic support for
SQL-like predicates similar to LINQ [15]. Predicates in Dog
are created using the where keyword. When a predicate is
paired with a collection identifier, it is compiled as a query
that can be passed to the built-in find: function to retrieve
matching structures:

sega_games = find: games where platform == "Genesis"

Built-in support for predicates allows some of the most com-
mon operations in Web applications to be written in a man-
ner that is easily readable. In particular, predicates are used

4

0

5

10

15

20

Ruby Dog Python

0

15

0

System Scripting

Ruby Dog Python

4
6

4

Comment System

Ruby Dog Python

0

16

0

Pagination

Figure 4. Results from asking users to identify the code they prefer for
solving different tasks.

heavily with the listen command. The following snippet
opens a channel that is only visible to users that have a their
“teacher” property set to true:

listen to people where teacher == true for assignments

The listen command accepts a predicate a query into the
people collection, a special system managed collection that
stores all user profiles. When a client submits a request, the
API ensures the client is authenticated on behalf of a user that
is matched by that query. To accept all users, developers can
use everyone instead of a query.

Dog’s core language constructs and named-parameter func-
tion invocation syntax allow developers to write English-like
programs that reduce code ambiguity to simplify develop-
ment. While much of a language’s ease-of-use is out of the
hands of the designers and depends on the authors of libraries,
by emphasizing understandability in the standard libraries we
hope to cultivate a community that values readability and in-
tuitive API design.

Syntax Evaluation
To evaluate our syntax decisions, in particular our choice to
use named parameters we ran a small study that compared
programs written in Dog to the same program written in either
Ruby or Python. The programs were explained in plain En-
glish and participants were asked which implementation they
preferred and if they had any prior experience with program-
ming. Three programs were used during this experiment. The
first was a portion of a Web application that handled pagi-
nation, an example that lends itself to workflow-centric pro-
gramming. The second was a commenting system that al-
lowed users to post comments on an online board, an example
that lends itself to resource-centric programming. The third
was a system-scripting program that sequentially renamed all
JPG files in a directory, an example of something that Dog
was explicitly not designed for. The Ruby and Python imple-
mentations were written using best practices, widely accepted
idioms, and relevant frameworks. Participants preferred the
Dog implementations by a wide margin (Figure 4). Partic-
ipants with little to no programming experience frequently
commented that the English-like language constructs (like on
and listen) as well as the “long but descriptive” function
names were the reason for their preference of Dog. On the flip
side, participants with programming experience, frequently
commented favorably about how Dog programs exhibit little

“hidden state” and that they didn’t need to guess the purpose
of particular function calls.

USING DOG
In this section, we present a series of applications to demon-
strate the usefulness of Dog and its programming model.

Real-Time Messaging: GroupChat
GroupChat is a real-time chatroom application. The program
begins by listening for users to enter a chatroom:
define chat_with: user do

...
end

listen to anyone for entrances
on each entrance do

user = person from entrance
chat_with: user

end

Once the user enters, we use the person from command
to get the current user and then call the chat with: func-
tion that loops forever listening for messages from that user:

define chat_with: user do
forever do

listen to user for messages
on message do

notify: "chatroom" of: message
end

end
end

Notice the use of on instead of on each when waiting for
messages. When waiting for entrances, we used on each
because we wanted to track each user independently of one
another. Whereas, in this case, we used on because we
wanted to continue execution with the current user.

Once we receive a message, we will want to broadcast it to
all other users in the chatroom. Real-time applications like
this call for “push” networking rather than HTTP’s typical
“pull” request-response cycle. As a solution to this common
and difficult problem, Dog provides a built-in notification li-
brary that allows the server to push messages to all subscribed
clients. All the official client libraries fully support push noti-
fications either through a background network connection or
by polling the server. The call to notify:of: will push the
message to all clients subscribed to the “chatroom” channel.
To build a browser-based client for GroupChat, we use dog.js,
the Javascript client library. Dog.js, like the other client li-
braries, is template-driven — all we need to do is create tem-
plates that the library will render automatically. The UI is
specified in an index.html file that is placed in a direc-
tory called public that is located along side the Dog pro-
gram. The Dog runtime will automatically serve any files in-
side the public directory, including resources like images
and stylesheets. index.html is shown below:

<html>
<script src="/dog/dog.js" />
<script id="root" type="text/x-dog-template">

<h2>Welcome to GroupChat</h2>
{{#listenLink listens.entrances}}Enter{{/listenForm}}

</script>

5

Figure 5. GradeBook is a peer assessment application written in Dog.
Dog’s cross-client development model allows server-side code to drive
multiple client side applications.

<script id="chat_with:" type="text/x-dog-template"
data-notifications="chatroom">

{{#each notifications.messages}}
{{this}}

{{/each}}

{{#listenForm listens.messages}}

<input type="text" name="message">
<button type="button">Send</button>

{{/listenForm}}
</script>

<div data-dog-viewport="true" />
</html>

Dog.js uses Handlebars.js, a logic-less template sys-
tem, for rendering templates [13]. Templates are con-
tained inside script tags with a content type of
text/x-dog-template. The template has access to the
variables that have been shown and listened. Tem-
plates are defined on a per-function basis. Thus, in this
case, we have two: one for the root function and another
for the chat with: function. Templates are associated
with a function using their id attribute. The chat with:
template is decorated with the data-notifications at-
tribute, which tells the client library to re-render the template
whenever a “chatroom” notification is received. Templates
are rendered and placed inside “viewports”. When a template
sends a request to a server-side listen, the server’s response
is rendered by a new template and replaces the viewport that
sent the original request. In most application, only a single
viewport is needed, as is the case with GroupChat. The full
source code is shown in Figure 1.

Native and Browser Development: GradeBook
GradeBook is a peer assessment application. When a student
submits an assignment, the application will require another
student to grade the submission. Once the grader is done,
the assignment is forwarded to the professor who can take
the grader’s feedback into consideration before providing the
final grade. The main application logic is shown below. Some
of the application’s code is abstracted into functions that are
not shown.

listen to people where role == "student" for assignments

Figure 6. Tangent is a socially created art installation where a Dog pro-
gram coordinated the activities of many individual contributors. Zoom
for detail. Graphite on canvas. 8ft. × 5ft.

on each assignment do
submitter = person from assignment
if user:submitter already_submitted:assignment then

error = "You may only submit your assignment once..."
show error to submitter

else
grades = ask_peers_of:submitter to_grade:assignment
teacher = people where role == "teacher"
final_grade = ask:teacher to_grade:assignment using:grades
assignment.grade = final_grade
save: assignment

end
end

The application can be easily changed to handle new require-
ments. For example, the code for having 3 students grade
each assignment is:

grades = []
repeat 3 times

grade = ask_peers_of:submitter to_grade:assignment
grades = append:grade to:grades

end

In addition to a browser-based client, we also created an
iPhone application using the the Cocoa Dog client library
(Figure 5).

Crowdsourcing: Tangent
Dog originated as a domain-specific language for parallel hu-
man computation [2]. It has evolved into a more general-
purpose programming language, but is still useful for pro-
gramming crowdsourcing systems. As an example, we used
Dog to create a number of crowdsourced art pieces for a re-
cent exhibition.

One such installation was a geometric art piece called Tan-
gent. Participants used “child-friendly” tools like stencils and
color pencils to draw circles that were tangent to each other
and then color the negative space between them. The installa-
tion can be seen in Figure 6. The entire code for the applica-
tion is shown below, although certain instructional message
strings have been shortened for brevity.

Functions

define confirm: message index: index do
show index to everyone
show message to everyone

6

message = "Is there any space available?"
listen to everyone for confirmation
wait on confirmation
confirmation == "no"

end

define confirm: message do
show message to everyone
listen to everyone for confirmation
wait on confirmation

end

define draw_circle do
confirm: "...draw a circle using a stencil..."

end

define ask: user to_draw_circle_tangent: index do
confirm: "...draw a circle tangent
to another circle..." index: index

end

define ask: user to_color_negative_space: index do
confirm: "...color in any enclosed
space that is not a circle..." index: index

end

Main

draw_circle

count = 1
while !done do

done = ask: someone to_draw_tangent_circle: count
count = count + 1

end

count = 1
while !done do

done = ask: someone to_color_negative_space: count
count = count + 1

end

During the time of the exhibit, Tangent has had hundreds of
collaborators. The application ran on a kiosk next to a canvas
and gave visitors instructions on how they could contribute.
The kiosk connected to a centrally hosted server which en-
abled remote tweaks to the application while it was deployed
in another country.

Social Networking: Aardvark
Dog is also capable of building applications using proto-
cols other than HTTP. For example, we built an Aardvark-
clone in Dog that allowed users to interact with the applica-
tion over IM and email. Aardvark [11] is a social question-
answer site that routes user submitted questions to somebody
in the user’s extended social network. Instead of submitting
questions using a Web page, Aardvark allows users to natu-
rally submit questions via instant message or email. Dog’s
standard library has built-in support for handling SMTP and
XMPP connections by overloading the listen command
with via instant message making Aardvark’s imple-
mentation straightforward. The follow code also makes use of
the wait on command, which is the same as the on block
except inline.

listen to everyone via instant_message for questions
on each question do

message = "Hey! I’ll try to find someone to answer that..."
send_message: message to: asker

category = classify: question
ranked_users = people where expertise == category
answered = false
for each user in ranked_users do

response = ask:user if_able_to_answer_question_on:category
if response == "yes" then

send_message: "Great, here it is: " to: user

listen to user via instant_message for response
wait on response

send_message: "Thanks. I’ll send that along." to: user
send_message: "I got an answer from #{user}." to: asker
send_message: response to: asker

answered = true
break

else
send_message: "Thanks for your help." to: user

end
end

if !answered then
message = "I couldn’t find anyone. Please try again."
send_message: message to: asker

end
end

RUNTIME
Most existing languages have runtimes that provide coarse-
grained concurrency primitives, execute instructions in a
blocking manner, and require application-level coordination
for distributed execution. These properties make it difficult to
efficiently implement Dog’s workflow programming model.
To address this, we built a custom runtime environment for
Dog that provides solutions to these limitations.

Existing Limitation: Thread-Only Concurrency
Many applications need to coordinate the activities of multi-
ple concurrent and independent users. Threads are the con-
ventional solution to concurrency. In theory, a developer
could create a separate thread to manage each user. Unfor-
tunately, threads require significant amounts of system re-
sources. If an application creates a new thread whenever it
is waiting for a user to submit input, the system will quickly
run out of memory.

Some languages, like Ruby and Python, provide green-
threads or coroutines that execute at the language level rather
than at the OS level and generally use less memory. However,
even green-threads are not suitable for coordinating individ-
ual users. First, despite their reduced memory consumption,
green-threads cannot handle Web-scale traffic if each user
is backed by a thread. Second, since thread state is stored
in memory, all user progress will be lost when the appli-
cation server is restarted (during a crash or routine mainte-
nance). Third, green-threads do not change the fact that cre-
ating multi-threaded applications and coordinating access to
shared memory is challenging for even the most experienced
developers [18]. Fourth, at a practical level, most languages
that provide green-threads also impose a Global Interpreter
Lock (GIL) which only allows a single thread to run at a time

7

to avoid problems with libraries that are not thread safe (e.g.
Python, Ruby, Javascript). As a result, these languages are
unable to take advantage of multicore CPUs.

Dog’s Solution: Task-Based Concurrency
Dog provides a concurrency primitive called tasks. A task
is a green-thread that is backed by a persistent continuation.
This means that a task waiting for input can be saved to disk
to reduce memory contention and survive past server restarts.
Saved continuations are automatically deleted from disk after
a configurable timeout, which, by default, is 1440 seconds.
An exception to this is the root task, which is never deleted.

Additionally, all values in Dog are immutable and the runtime
prevents shared memory references. This memory model
not only simplifies the understandability and predictability
of Dog programs but also facilitates multithreaded program-
ming by eliminating the need for locks and avoiding unin-
tended side effects. Cross-task communication is coordinated
by special, uni-directional, FIFO channels. Lastly, since there
is no shared state, Dog does not impose a GIL and Dog pro-
grams take advantage of multicore CPUs. While immutabil-
ity makes parallel execution easier, certain sequential pro-
gramming tasks are harder. As an example, iterators are less
efficient and can be awkward since changes to enumerated
elements are lost unless explicitly re-saved.

Existing Limitation: Blocking Execution Semantics
Almost all existing languages’ runtimes are synchronous and
execute instructions in a blocking manner that waits for the
current instruction to finish before proceeding. In conjunction
with thread-only concurrency, when an application attempts
to access input from a user, the entire thread will block. This
has two negative consequences. First, as previously men-
tioned, it increases the memory demand on the machine. Sec-
ond, this will lead to a large number of system threads, result
in significant context switching overhead, and slow the ma-
chine.

Additionally, many applications may need to respond to mul-
tiple sources of user input. For example, a survey applica-
tion may want to send out a single task to hundreds of people
and wait for the responses. With blocking execution seman-
tics, only a single task can be sent at a time even though the
tasks are independent of one another and can be done in par-
allel. Using a separate thread (or even a Dog task) to solve
this problem requires application control to be broken up into
multiple worker threads and joined back, which is challeng-
ing for even experienced developers [18].

Dog’s Solution: Asynchronous Execution
Synchronous runtimes provide a straightforward, “strictly
consistent” guarantee: the program always finishes execut-
ing a statement before moving to the next. Dog’s runtime,
on the other hand, is asynchronous and provides a slightly
different, “causally consistent” guarantee: a statement’s out-
put will be written by the time that the output is needed. In
general, this nuanced distinction can be ignored as it often
does not impact the correctness of a program3. However, it
3This is only true because of Dog’s immutable memory model.

does allow the runtime to execute code in non-deterministic
ways to improve performance. Certain function calls in Dog
do not immediately return an output value but rather return
a special future that promises to eventually hold the output.
When a program attempts to access a future the current task
will automatically block and the runtime will swap it out so
another task can execute. The moment the promised value is
provided, all tasks waiting on that future will resume execu-
tion. This allows Dog programs to wait for multiple users in
the same task without fear of blocking the task from doing
other operations.

Existing Limitation: Process-Bound Execution
A key problem facing current applications is distributing traf-
fic across multiple machines to handle large numbers of users
[19]. This poses a problem for workflow-programming with
existing languages because virtually all existing runtimes are
process-bound and only execute in a single process on a sin-
gle machine. Distributing execution over many nodes re-
quires architecting applications around a centralized database
and manually managing state between machines.

Dog’s Solution: Dynamic Distributed Load Balancing
The Dog runtime is designed to naturally scale across multi-
ple machines and readily tolerate machine failures. When a
Dog program begins, the runtime starts, connects to a dis-
tributed task queue and waits for a task to be scheduled.
Adding new machines to a Dog cluster is as simple running
the Dog program on a new machine and specifying the task
queue as a command line flag. When a task is scheduled for
execution, the task queue will evenly distribute them across
the available machines. Tasks can be distributed across ma-
chines without worry of deadlock, race conditions, or con-
sistency errors, because of the runtime’s non-shared and im-
mutable memory semantics. Thanks to persistent continua-
tions, machines in a Dog “cluster” can fail without worry. If
a machine crashes in the middle of executing a function, some
other machine will eventually pick up where the machine left
off and continue execution. In fact, the runtime has a “crash-
only” design — gracefully stopping a runtime instance and
yanking the power cable from the box have the same effect.
This is also another difference between Dog and continuation
passing style Web frameworks. These frameworks store con-
tinuations in memory which means that special load balanc-
ing is needed to route subsequent requests to the correct pro-
cess on the correct machine and that custom fault tolerance
schemes are necessary to recover from a machine crashing or
going offline for maintenance.

IMPLEMENTATION
The standard reference implementation for Dog compiles to
Java Virtual Machine (JVM) bytecode. Targeting the JVM
was a natural choice given its performance, stability, and
widespread adoption [14]. As a result, developers can na-
tively interoperate with any existing Java library.

Compiler
The Dog compiler is written in Java and uses an LL(*) parser
[25] generated from a grammar written using ANTLR [22].

8

Some Function

int getRegisterCount() {...}
int getVariableCount() {...}

void resume(StackFrame f) {
 switch(f.program_counter) {
 case 0:
 ...
 f.program_counter++;
 ...
 case N:
 ...
 f.program_counter++;
 }
}

Call Stack

id
status
function
program_counter
return_register

Stack Frameid
status
function
program_counter
return_register

Stack Frame

registers[]
variables[]

id
status
function
program_counter
return_register

Stack Frame

Figure 7. Dog implements persistent continuations by subverting the
JVM stack and using custom, heap-allocated, stack frames. Every func-
tion is backed by a class that reports the number of necessary registers
and variable slots. A stack frame object is instantiated accordingly and
passed into the function’s resume method.

The parser produces a Dog abstract syntax tree that the com-
piler transforms into a flat array of Dog Virtual Machine In-
structions. The Dog Virtual Machine is a register-based ma-
chine [27] and has an instruction set modeled after Lua [12].
The assembler emits the appropriate JVM bytecode for each
Dog VM instruction. Internally, each Dog VM instruction
is modeled as a class that overrides the toJVMBytecode
method. This code architecture allows reuse of the compiler
front-end by multiple runtime back-ends, making it possible
to target other runtime environments in the future4. Lastly,
the generated JVM bytecode is written to disk as a bark file,
which is a ZIP file that holds metadata used by the Dog run-
time to begin execution.

Persistent Continuations
The JVM (like most languages) does not provide support for
continuations that are both serializable and portable. Thus,
Dog subverts the JVM stack and forces the runtime to use
a continuation passing style with custom stack frames. All
Dog functions are compiled to Java classes that override the
resume method. When the resume method is called, it re-
ceives a heap-allocated stack frame object that is dynamically
created with the correct amount of registers and variable slots
that the function needs to run (Figure 7). During compila-
tion, all the JVM instructions are instrumented so they inter-
act with the Dog stack instead of the JVM stack.

To resume a function the compiler inserts special checkpoints
into the JVM bytecode stream. These checkpoint atomically
increment a special program-counter in the stack frame (Fig-
ure 7). At the start of the function, the compiler inserts a
jump table (implemented as a JVM tableswitch instruc-
tion) that inspects the program-counter and jumps to the cor-
rect instruction in the function’s bytecode. The checkpoints
are inserted such that the code between checkpoints is guar-
anteed to be idempotent. Thus, if the machine crashes while
the runtime is between checkpoints, the function can still be
safely resumed.

Scheduler
The scheduler connects to the distributed task queue, waits for
tasks to be scheduled, and then coordinates their execution.
4Currently, Dog has an existing implementation in Ruby. Addition-
ally, a Javascript runtime that targets V8 and Node.js is also in the
works.

1

2

3 4
5

6

Function Foo

Invokes "Bar"

Function Bar

Executes and
returns value

Function Foo

Resumes execution
with return value

Scheduler

Time

Call Stack

Figure 8. Dog uses a “trampoline” to call and return from functions.
Function Foo calls Bar by returning a signal object to the scheduler (1).
The scheduler inspects the signal, allocates a new stack frame for Bar
and pushes it onto the call stack (2). The scheduler then calls Bar and
passes the current call stack as an argument (3). Function Bar executes
and returns another signal object with its return value (4). The scheduler
pops the stack frame from the call stack, and inserts the return value
into Foo’s stack frame (5). The scheduler then resumes execution of Foo
from where it left off (6).

Each runtime has at least one scheduler but, by default, the
reference implementation creates single scheduler for every
core that is available on the system to maximize performance
on multicore CPUs. The task queue is implemented on top of
MongoDB [1].

An important part of the scheduler is managing function invo-
cations using a technique called a “trampoline” [4]. Instead of
a caller function directly invoking a callee function, the caller
simply returns a “signal” to the scheduler with a reference to
the callee (Figure 8). The scheduler inspects the signal, re-
solves the function reference, dynamically creates a custom
stack frame for the callee, sets the callee’s stack frame’s par-
ent to the caller’s stack frame, and then invokes the callee.
When the callee returns, the scheduler takes the return value,
inserts it into the caller’s stack frame’s return register
(Figure 7), and resumes execution of the caller. The use of
a trampoline greatly simplifies the implementation of Dog’s
persistent continuations.

When a task attempts to access a future or begins waiting on
a channel it throws a WaitException which is caught by
the scheduler. The task is then persisted to the task queue
until the data become available.

PERFORMANCE EVALUATION
While Dog was not designed specifically for execution speed,
it is important to achieve a certain threshold of performance
to be useful in practice. Consequently, we ran a standard set
of benchmarks on Dog and compared its results with other
languages:

Benchmark Dog v0.4 Ruby v1.9 Python v2.7
fib
prime
mandelbrot
substring

1.722s 2.357s 6.385s
14.974s 3.985s 15.993s
11.410s 8.780s 1.080s
15.222s 28.016s 22.724s

As shown in the table above, Dog is competitive with Ruby
and Python, faster on the benchmarks that involve frequent

9

memory access (substring) and slow on the benchmarks that
require complex mathematics (mandelbrot).

In terms of network performance, which is more important
for Web applications, Dog has a clear advantage thanks to
the JVM’s robust network stack. The GradeBook applica-
tion written in Rails with various performance optimizations
is able to process an average of 229.08 requests per second
while the Dog version is able to process 937.62 requests per
second.

All tests were run on a 2.4 GHz Intel Core i5 CPU with 8GB
of RAM. It is important to note that performance-critical por-
tions of a Dog program can always be written natively with
Java.

RELATED WORK
Dog was inspired by many different languages and sys-
tems. Its syntax with named parameters heavily influenced by
Smalltalk, its data model with only a single composite “struc-
ture” type by Lua, its register-based virtual machine instruc-
tion set by Lua, its immutable memory model by Clojure,
and its runtime concurrency features like tasks and channels
by Go and Stackless Python [7, 12, 10, 8, 31].

Dog is philosophically related to prior work on languages that
facilitate Web programming tasks, although they target other
aspects of the Web development stack: S (RESTful services),
Flapjax (client-side AJAX), and Atomate (information pro-
cessing) [5, 16, 32]. Dog is also related to and inspired by
many widely-used Web development frameworks that priori-
tize ease of use and rapid development like Rails and Django
[24, 6]. Additionally, there are a handful of Web develop-
ment frameworks that are built around continuation passing.
These include Seaside, Apache Cocoon, and Tir [23, 30, 26].
While these frameworks make it easy to use workflows in
Web development they do not support persistent continua-
tions for load balancing and are not built around a server-
client-scripting protocol to target multiple client platforms.

CONCLUSION
Dog introduces a new way of building applications that sim-
plifies many development tasks. Its unique runtime model
provides elegant solutions to asynchronous state manage-
ment, cross-client development, and scalable deployment. As
such, Dog represents a useful and timely tool for developing
modern applications, which emphasize Web accessible ser-
vices that coordinate the activities of many users across mul-
tiple different client platforms.

REFERENCES
1. 10Gen Inc. MongoDB. http://www.mongodb.com.
2. Ahmad, S., Battle, A., Malkani, Z., and Kamvar, S. The Jabberwocky

Programming Environment for Structured Social Computing. In
Proceedings of the 24th annual ACM Symposium on User Interface
Software and Technology, ACM (2011), 53–64.

3. Andreesen, M. Why Software Is Eating The World. The Wall Street
Journal (2011).

4. Bothner, P. Kawa: Compiling Dynamic Languages to the Java VM. In
Proceedings of the annual conference on USENIX Annual Technical
Conference (1998), 41–41.

5. Daniele Bonetta et. al. S: A Scripting Language for High-Performance
RESTful Web Services. In PPoPP ’12 (2012).

6. Django Software Foundation. Django.
https://www.djangoproject.com.

7. Goldberg, A., and Robson, D. Smalltalk-80: The Language and its
Implementation. Addison-Wesley Longman Publishing Co., Inc., 1983.

8. Google Inc. Go. http://golang.org.

9. Google Inc. Google web toolkit.
https://developers.google.com/web-toolkit/.

10. Hickey, R. Clojure. http://www.clojure.org.

11. Horowitz, D., and Kamvar, S. D. The Anatomy of a Large-Scale Social
Search Engine. In Proceedings of the 19th International Conference on
World Wide Web (2010), 431–440.

12. Ierusalimschy, R., De Figueiredo, L. H., and Celes, W. The
implementation of Lua 5.0. Journal of Universal Computer Science 11,
7 (2005), 1159–1176.

13. Katz, Y. Handlebars.js: Minimal Templating on Steroids.
http://handlebarsjs.com.

14. Lindholm, T., and Yellin, F. Java Virtual Machine Specification, 2nd ed.
Addison-Wesley Longman Publishing Co., Inc., 1999.

15. Meijer, E., Beckman, B., and Bierman, G. LINQ: Reconciling Object,
Relations and XML in the .NET Framework. In Proceedings of ACM
SIGMOD (2006), 706–706.

16. Meyerovich, Leo A. et. al. Flapjax: A Programming Language for Ajax
Applications. In Proceedings of the 24th ACM SIGPLAN conference on
OOPSLA (2009), 1–20.

17. Myers, B., Park, S. Y., Nakano, Y., Mueller, G., and Ko, A. How
Designers Design and Program Interactive Behaviors. In Visual
Languages and Human-Centric Computing (2008), 177–184.

18. Ousterhout, J. Why Threads Are A Bad Idea (for most purposes). In
Presentation given at the 1996 Usenix Annual Technical Conference,
vol. 5 (1996).

19. Ousterhout, J. Fiz: A Component Framework for Web Applications,
2009.

20. Pane, J. F., Myers, B. A., and Miller, L. B. Using HCI Techniques to
Design a More Usable Programming System. In Proceedings of the
IEEE Symposium on Human Centric Computing Languages and
Environments (2002), 198–206.

21. Pane, J. F., Ratanamahatana, C., Myers, B. A., et al. Studying the
Language and Structure in Non-Programmers’ Solutions to
Programming Problems. International Journal of Human-Computer
Studies 54, 2 (2001), 237–264.

22. Parr, T. J., and Quong, R. W. ANTLR: A Predicated-LL(k) Parser
Generator. Software Practice and Experience 25 (1994), 789–810.

23. Perscheid, M., Tibbe, D., Beck, M., Berger, S., Osburg, P., Eastman, J.,
Haupt, M., and Hirschfeld, R. An Introduction to Seaside. Software
Architecture Group (Hasso-Plattner-Institut), 2008.

24. Rails Core Team. Ruby on Rails.
http://www.rubyonrails.org.

25. Rosenkrantz, D. J., and Stearns, R. E. Properties of deterministic top
down grammars. In Proceedings of the First Annual ACM Symposium
on Theory of Computing, STOC ’69, ACM (1969), 165–180.

26. Shaw, Z. Tir Web Framework. http://tir.mongrel2.org.

27. Shi, Y., Casey, K., Ertl, M. A., and Gregg, D. Virtual Machine
Showdown: Stack versus Registers. ACM Transactions on Architecture
and Code Optimization 4, 4 (2008), 2:1–2:36.

28. Smith, A. Smartphone Adoption and Usage. Pew Research Center
(2011).

29. Smith, A. Nearly half of American adults are smartphone owners. Pew
Research Center (2012).

30. The Apache Cocoon Project. Cocoon.
http://cocoon.apache.org/.

31. Tismer, C. Continuations and Stackless Python. In Proceedings of the
8th International Python Conference (2000), 2000–01.

32. Van Kleek, et. al. Atomate it! End-user Context-sensitive Automation
using Heterogeneous Information Sources on the Web. In WWW ’10
(2010).

10

http://www.mongodb.com
https://www.djangoproject.com
http://golang.org
https://developers.google.com/web-toolkit/
http://www.clojure.org
http://handlebarsjs.com
http://www.rubyonrails.org
http://tir.mongrel2.org
http://cocoon.apache.org/

	Introduction
	Workflow-Centric Programming
	Conventional Approach: Manual State Management
	Dog: Automatic State Management

	Server-Client Scripting
	Syntax
	Overview
	Syntax Evaluation

	Using Dog
	Real-Time Messaging: GroupChat
	Native and Browser Development: GradeBook
	Crowdsourcing: Tangent
	Social Networking: Aardvark

	Runtime
	Existing Limitation: Thread-Only Concurrency
	Dog's Solution: Task-Based Concurrency
	Existing Limitation: Blocking Execution Semantics
	Dog's Solution: Asynchronous Execution
	Existing Limitation: Process-Bound Execution
	Dog's Solution: Dynamic Distributed Load Balancing

	Implementation
	Compiler
	Persistent Continuations
	Scheduler

	Performance Evaluation
	Related Work
	Conclusion
	REFERENCES

