
Flexible Tree Matching

Ranjitha Kumar Jerry O. Talton Salman Ahmad Tim Roughgarden Scott R. Klemmer
Stanford University

Department of Computer Science
{ranju,jtalton,saahmad,tim,srk}@cs.stanford.edu

Abstract

Tree-matching problems arise in many computa-
tional domains. The literature provides several
methods for creating correspondences between la-
beled trees; however, by definition, tree-matching
algorithms rigidly preserve ancestry. That is, once
two nodes have been placed in correspondence,
their descendants must be matched as well. We in-
troduce flexible tree matching, which relaxes this
rigid requirement in favor of a tunable formulation
in which the role of hierarchy can be controlled.
We show that flexible tree matching is strongly
NP-complete, give a stochastic approximation al-
gorithm for the problem, and demonstrate how
structured prediction techniques can learn the al-
gorithm’s parameters from a set of example match-
ings. Finally, we present results from applying the
method to tasks in Web design.

1 Introduction
The problem of comparing trees arises naturally in diverse
fields, including computational biology, compiler optimiza-
tion, natural language processing, and computer vision [Bille,
2005]. The most common measure for gauging the similarity
of two labeled trees is the edit distance metric, first introduced
by Tai [1979], which computes the cost of transforming one
tree into another through a sequence of elementary node oper-
ations such as insertion, deletion, and renaming. To calculate
this distance, a minimum-cost correspondence is established
between the nodes of the two trees in a process known as
tree matching.

In the classical formulation, these correspondences are
rigid: they are not allowed to violate ancestor-descendant
relationships between nodes, nor the left-to-right order of a
node’s children. As a result of these structural requirements,
the problem admits an efficient dynamic programming algo-
rithm, and the optimal matching can be found in cubic time
[Demaine et al., 2009]. If the ordering requirement is re-
moved (but the ancestry requirement maintained), the edit
distance computation becomes NP-complete [Zhang et al.,
1992], and approximation algorithms are necessary [Shasha
et al., 1994].

In some domains, the most appropriate matchings may not
strictly preserve ancestry. For instance, while reparenting
even a single node in a phylogenetic tree of bacteria would
destroy its validity, the ancestry relationships in the Docu-
ment Object Model tree of a Web page are much less prescrip-
tive: moving a search bar from header to footer results in a
different—but largely equivalent—page. This pattern follows
for many other tree structures encountered in design and data
management, in which hierarchy plays an important—but not
definitive—role [Chawathe and Garcia-Molina, 1997].

We introduce flexible tree matching, which relaxes the re-
quirement that the produced correspondence strictly preserve
ancestry relationships. Instead, the algorithm provides a pa-
rameterized framework for controlling the relative import of
labeling and hierarchy. Introduced in Kumar et al. [2011],
the algorithm uses an edge-based cost model to match nodes
with similar labels while simultaneously penalizing match-
ings which induce violations of the hierarchy or break up sib-
ling groups. Determining the minimum edit distance between
trees then reduces to finding a minimum-cost matching under
this model.

We prove that flexible tree matching isNP-complete in the
strong sense, and give a corresponding stochastic approxima-
tion algorithm. We also show how to learn the parameters of
the model from a corpus of examples via standard structured
prediction techniques, and summarize results from applying
the method to automatic retargeting in Web design.

2 A Flexible Model for Tree Matching
A tree matching is an injective binary relation defined be-
tween two labeled trees T1 and T2. The relation can be
viewed as a bipartite graph between the trees’ nodes, with
edges representing editing operations for transforming one
tree into the other. Edges identifying nodes with dissimilar
labels represent relabeling operations, while nodes which are
not mapped correspond to insertions or deletions.

To differentiate between mappings, classical tree match-
ing requires a model that defines the relabeling cost between
nodes and the insertion/deletion cost for nodes which are not
matched. Given such a model, the tree-matching problem is
to find a lowest-cost mapping between trees which preserves
ancestry: once two nodes m ∈ T1 and n ∈ T2 are matched,
the descendants of m can only be matched to descendants of
n, and vice versa.

Flexible matching relaxes this rigid ancestry requirement
in favor of a tunable edge-based cost model. It forms a com-
plete bipartite graph G between T1 ∪ {⊗1} and T2 ∪ {⊗2},
where⊗1 and⊗2 are auxiliary no-match nodes. Each edge in
G is assigned a cost comprising three terms: a relabeling term
cr, penalizing edges that connect nodes with different labels,
an ancestry term ca, penalizing edges that violate ancestry re-
lationships, and a sibling term cs, penalizing edges that break
up sibling groups. The cost of an edge c(e) is the sum of these
three terms, and the goal of flexible tree matching is to pro-
duce a set of edges M ⊂ G such that every node in T1 ∪ T2

is covered by precisely one edge and the total mapping cost
c(M) = 1

|T1|+|T2|
∑

e∈M c(e) is minimized.

3 Exact Edge Costs
We define the cost of an edge e ∈ T1 × T2,

c(e) = cr(e) + ca(e) + cs(e).

For edges in G connecting tree nodes to no-match nodes, we
fix the cost c(e) = wn, where wn is a constant no-match
penalty weight.

The relabeling term cr([m,n]) defines the cost of swap-
ping the labels of nodes m and n. This function is domain-
dependent, and user-specified. If the labels are identical,
cr([m,n]) = 0.

The ancestry cost ca(·) penalizes edges that violate an-
cestry relationships between the trees’ nodes. Consider a
node m ∈ T1, and let C(m) denote the children of m and
M(m) denote the image of m in the matching. We define the
ancestry-violating children of m, V (m), to be the set of m’s
children that map to nodes that are not M(m)’s children, i.e.,

V (m) = {m′ ∈ C(m) |M(m′) ∈ T2 \ C(M(m))} ,

and define V (n) symmetrically. Then, the ancestry cost for
an edge is proportional to the number of ancestry violating
children of its terminal nodes

ca([m,n];M) = wa (|V (m)|+ |V (n)|) ,

where wa is a constant ancestry weight (see Figure 1).
The sibling cost cs(·) penalizes edges that fail to preserve

sibling relationships between trees. To calculate this term,
we first define a few tree-related concepts. Let P (m) denote
the parent of m. The sibling group of a node m comprises

m n

n'

e

...

Figure 1: Flexible tree matching determines the ancestry
penalty for an edge e = [m,n] by counting the children of
m and n which induce ancestry violations. In this example, n′

is an ancestry-violating child of n because it is not mapped to
a child of m; therefore, n′ induces an ancestry cost on e.

the children of its parent: S(m) = {C(P (m))}. Given a
mapping M , the sibling-invariant subset of m, IM (m), is
the set of nodes in m’s sibling group that map to nodes in
M(m)’s sibling group, i.e.,

IM (m) = {m′ ∈ S(m) |M(m′) ∈ S(M(m))} ;

the sibling-divergent subset ofm,DM (m), is the set of nodes
in m’s sibling group that map to nodes in T2 not in M(m)’s
sibling group, i.e.,

DM (m) = {m′ ∈ S(m) \ IM (m) |M(m′) 6= ⊗2} ;

and the set of distinct sibling families that m’s sibling group
maps into is

FM (m) =
⋃

m′∈S(m)

P (M(m′)).

We define all corresponding terms for n symmetrically, and
then compute the total sibling cost

cs([m,n];M) = ws

(
|DM (m)|

|IM (m)||FM (m)|
+

|DM (n)|
|IM (n)||FM (n)|

)
,

where ws is a constant sibling violation weight. The two ra-
tios in the cost increase when siblings are broken up by the
matching (i.e., their images have different parents), and de-
crease when siblings groups are maintained (see Figure 2).
The FM (·) terms are included to guarantee that the total sib-
ling penalty contributed by a tree is bounded by the number
of nodes it contains.

4 Example Matchings
Figure 3 compares ordered, unordered, and flexible tree
matching. In these examples, a simple relabeling function
assigns a constant weight wr to all edges between tree nodes
with differing labels. In ordered and unordered matching, the
rigid preservation of ancestry leaves many nodes unmatched.
In flexible matching, more common structure is preserved be-
tween the trees. By varying the terms in the cost model, dif-
ferent mappings can be achieved.

5 Flexible Tree Matching is NP-complete
We prove that flexible tree matching is strongly NP-
complete. We employ a simple version of the flexible cost

n n' n''m

...

e

Figure 2: To determine the sibling penalty for an edge
e = [m,n], the algorithm computes the sibling-invariant
and sibling-divergent subsets of m and n. In this example,
IM (n) = {n′} and DM (n) = {n′′}; therefore, n′ decreases
the sibling cost on e and n′′ increases it.

Ordered Tree Matching
wr = 2.0;wn = 1.0

G D

C

F FF

A A

B

CC

B

C C

D

GF F

Unordered Tree Matching
wr = 2.0;wn = 1.0

G D B

C

F

B D

G

A A

FF

CCC C F F

Flexible Tree Matching
wr = 0.9;wn = 1.0;wa = 1.0;ws = 0.1

D

F

A A

G B

C C

FF

C

B

C C

D

GF F

Flexible Tree Matching
wr = 0.9;wn = 1.0;wa = 0.1;ws = 1.0

G

C

A A

D B

C

F FF

C

B

C C

D

GF F

Flexible Tree Matching
wr = 1.0;wn = 1.0;wa = 0.5;ws = 0.5

D

F

A A

G B

C C

FF

C

B

C C

D

GF F

Figure 3: Examples of ordered, unordered, and flexible tree
matchings.

model from Section 4, where wr = 1, wn = 1, wa = 0,
and ws = 1. That is, ancestry violations are forgiven but all
relabelings, no-matches, and sibling violations are costly.
Given this model and two labeled trees T1 and T2, we address
the decision problem “Does there exist a zero-cost flexible
mapping between the trees?”

This problem is in NP , since a proposed zero-cost map-
ping can be verified in polynomial time. To show that the
problem isNP-hard, we formulate a polynomial-time reduc-
tion from 3-PARTITION [Garey and Johnson, 1975].

The 3-PARTITION problem is to decide whether a given
multiset of integers can be partitioned into triples that all have
the same sum. More formally, each instance is a finite set S of
3m integers, where each integer xi ∈ S satisfiesK/4 < xi <
K/2 for some boundK ∈ Z+ and

∑
xi = 3K. The question

is to determine whether or not S can be partitioned into m
disjoint sets U1, . . . , Um, each with three elements, so that∑

u∈Ui
u = K for every i ∈ {1, 2, . . . ,m}. This problem is

NP-complete even when K is polynomial in m [Garey and
Johnson, 1975].

Given a 3-PARTITION instance, we construct trees T1 and
T2 as in Figure 4. Each tree consists of three levels, and the
nodes are labeled based on their level. T1 represents the set
S, and contains 3m subtrees on the second level, with subtree
i possessing xi leaf nodes. T2 contains m subtrees on the
second level with K children each, and 2m more one-node
subtrees. Since K is polynomial in m, this construction takes
time polynomial in the size of the 3-PARTITION instance.

Under what circumstances can a zero-cost matching exist
between these two trees? Since wn = 1, such a matching
must map every node in T1 to some node in T2, and vice
versa. Similarly, since wr = 1, the matching cannot identify
nodes in different levels of the trees. Most importantly, since
ws = 1, a zero-cost matching must preserve the 3m sibling
groups of leaf nodes in T1: each of the m leaf node sibling
groups in T2 must be matched to exactly three leaf node sib-
ling groups in T1. Thus, a zero-cost matching exists only
if the corresponding 3-PARTITION instance has a solution.
Conversely, a solution to the 3-PARTITION instance indicates
which leaf node sibling groups in T1 should be matched to a
common leaf node sibling group in T2, naturally inducing a
zero-cost matching.

This reduction implies that no polynomial-time (or even
pseudopolynomial-time) algorithm can exist for flexible tree
matching. For this reason, we propose a stochastic optimiza-
tion algorithm for approximating the optimal matching, based
on bounding the edge costs.

A

B

C C

B

C C

B

C C

B B......

...

A

B

C C

B

C C

B

C C...... ...

x1 x2 x3 K K K

...

T1 T2

1 2 3m 1 2 m m+1 3m

Figure 4: The tree construction for the reduction from
3-PARTITION.

6 Bounding Edge Costs
While the cost model described in Section 3 balances labeling
and structural constraints, it cannot be used to search for an
optimal mapping M? directly. Although cr([m,n]) can be
evaluated for an edge by inspecting m and n, ca(·) and cs(·)
require information about the other edges in the mapping.

While we cannot precisely evaluate ca(·) and cs(·) a pri-
ori, we can compute bounds for them on a per-edge basis.
Moreover, each time we accept an edge [m,n] into M , we
can remove all the other edges incident on m and n from
G. Each time we prune an edge in this way, the bounds for
other nearby edges may be improved. Therefore, we employ
a Monte Carlo algorithm to approximate M?, stochastically
fixing an edge inG, pruning away the other edges incident on
its nodes, and updating the bounds on those that remain.

To bound the ancestry cost of an edge [m,n] ∈ G, we con-
sider each child of m and n and answer two questions. First,
is it impossible for this node to induce an ancestry violation?
Second, is it unavoidable that this node will induce an an-
cestry violation? The answer to the first question informs the
upper bound for ca(·); the answer to the second informs the
lower.

A node m′ ∈ C(m) can induce an ancestry violation if
there is some edge between it and a node in T2 \ (C(n) ∪
{⊗2}). Conversely, m′ is not guaranteed to induce an an-
cestry violation if some edge exists between it and a node in
C(n) ∪ {⊗2} . Accordingly, we define indicator functions

1Ua (m′, n) =

{
1 if ∃[m′, n′] ∈ G s.t. n′ 6∈ C(n) ∪ {⊗2}
0 else

,

1La (m′, n) =

{
1 if 6 ∃[m′, n′] ∈ G s.t. n′ ∈ C(n) ∪ {⊗2}
0 else

.

Then, the upper and lower bounds for ca([m,n];M) are

Ua([m,n]) =

wa

 ∑
m′∈C(m)

1Ua (m′, n) +
∑

n′∈C(n)

1Ua (n′,m)

 ,

and

La([m,n]) =

wa

 ∑
m′∈C(m)

1La (m′, n) +
∑

n′∈C(n)

1La (n′,m)

 .

Figure 5 illustrates the computation of these bounds. Prun-
ing edges from G causes the upper bound for ca([m,n];M)
to decrease, and the lower bound to increase.

Similarly, we can bound cs([m,n];M) by bounding the
number of divergent siblings, invariant siblings, and distinct
families: |D(·)|, |I(·)|, and |F (·)|. Let S̄(m) = S(m) \ {m}
and consider a node m′ ∈ S̄(m). It is possible that m′ is in
DM (m) as long as some edge exists between it and a node in
T2 \ (S̄(n)∪ {⊗2}). Conversely, m′ cannot be guaranteed to
be in DM (m) as long as some edge exists between it and a

node in S̄(n) ∪ {⊗2}. Then, we have

1UD(m′, n) =

{
1 if ∃[m′, n′] ∈ G s.t. n′ 6∈ S̄(n) ∪ {⊗2}
0 else

,

UD(m,n) =
∑

m′∈S̄(m)

1UD(m′, n),

and

1LD(m′, n) =

{
1 if 6 ∃[m′, n′] ∈ G s.t. n′ ∈ S̄(n) ∪ {⊗2}
0 else

,

LD(m,n) =
∑

m′∈S̄(m)

1LD(m′, n).

The bounds for |IM (m)| are similarly given by

1UI (m′, n) =

{
1 if ∃[m′, n′] ∈ G s.t. n′ ∈ S̄(n)
0 else

,

UI(m,n) = 1 +
∑

m′∈S̄(m)

1UI (m′, n),

and

1LI (m′, n) =

{
1 if ∀[m′, n′] ∈ G, n′ ∈ S̄(n)
0 else

,

LI(m,n) = 1 +
∑

m′∈S̄(m)

1LI (m′, n).

For all nonzero sibling costs, the lower bound for |FM (m)|
is 2 and the upper bound is LD(m,n) + 1. All remaining
quantities are defined symmetrically. Then, upper and lower
bounds for cs([m,n];M) are given by

Us([m,n]) =
ws

2

(
UD(m,n)

LI(m,n)
+
UD(n,m)

LI(n,m)

)
and
Ls([m,n]) =

ws

(
LD(m,n)

UI(m,n) (LD(m,n) + 1)
+

LD(n,m)

UI(n,m) (LD(n,m) + 1)

)
.

Figure 6 illustrates the computations of the bounds for the
sibling cost term.

With bounds for the ancestry and sibling terms in place,
upper and lower bounds for the total edge cost are cU (e) =
cr(e) + Ua(e) + Us(e) and cL(e) = cr(e) + La(e) + Ls(e).

m n

n' n''

e

...

m''m'

Figure 5: To bound ca([m,n];M), observe that neither m′ nor
n′ can induce an ancestry violation. Conversely, m′′ is guar-
anteed to violate ancestry. No guarantee can be made for n′′.
Therefore, the lower bound for ca is wa, and the upper bound
is 2wa.

7 Approximating the Optimal Mapping
To approximate the optimal mapping M∗, we use the
Metropolis algorithm [Press et al., 2007]. We represent
each matching as an ordered list of edges M , and define a
Boltzmann-like objective function

f(M) = exp [−β c(M)] ,

where β is a constant. At each iteration of the algorithm, a
new mapping M̂ is proposed, and becomes the new reference
mapping with probability

α(M̂ |M) = min

(
1,
f(M̂)

f(M)

)
.

The algorithm runs for N iterations, and the mapping with
the lowest cost is returned.

To initialize M , the bipartite graph G is constructed and
the edge bounds initialized. Then, the edges in G are tra-
versed in order of increasing bound. Each edge is considered
for assignment to M with some fixed probability γ, until an
edge is chosen. If the candidate edge can be fixed and at least
one complete matching still exists, it is appended to M , the
other edges incident on its terminal nodes are pruned, and the
bounds for the remaining edges in G are tightened.

To propose M̂ , we choose a random index j ∈ [1, |M |].
Then, we re-initialize G, and fix the first j edges in M . To
produce the rest of the matching, we repeat the iterative edge
selection process described above. In our implementation, we
take γ = .7 andN = 100; β is chosen on a per-domain basis.

8 Learning Cost Models
While flexible tree matching can be used with any cost model
comprising weights wr, wa, ws, and wn, it is often desirable
to learn a model that will produce mappings with domain-
dependent characteristics. In particular, given a set of trees
and exemplar matchings defined between them, we can use
the generalized perceptron algorithm to learn weights under
which the example matchings are minimal [Collins, 2002].

First, we reformulate the cost of a mapping c(M) in
terms of a weight vector w = 〈wr, wa, ws, wn〉. For each
edge, we compute the difference between the real-valued la-
bels of its terminal nodes and the exact ancestry and sibling
costs, and concatenate these values along with a Boolean

n n''m

e

...

n'

...

m' m''

Figure 6: To bound cs([m,n];M), observe that m′ is guaran-
teed to be in IM (m), and m′′ is guaranteed to be in DM (m).
No guarantees can be made for n′ and n′′. Therefore, the
lower bound for cs is ws/4, and the upper bound is 3ws/4.

no-match indicator into a feature vector fe. The edge cost
can then be computed as c(e) = wT fe. Given a map-
ping M , the algorithm assembles an aggregate feature vec-
tor FM = 1

|T1|+|T2|
∑

e∈M fe to calculate the mapping cost
c(M) = wTFM .

In each training iteration, the perceptron randomly se-
lects a pair of trees and an associated mapping M from
the training set. Next, it computes a new mapping M̂ ≈
argminM wT

i FM using the current cost model wi. For the
first iteration, w0 = 0. Based on the resultant mapping, a
new aggregate feature vector FM̂ is calculated, and the cost
model is updated by wi+1 = wi + αi

(
FM̂ − FM

)
, where

αi = 1/
√
i+ 1 is the learning rate.

While the perceptron algorithm is only guaranteed to con-
verge if the training set is linearly separable, in practice it pro-
duces good results for many diverse data sets [Collins, 2002].
Since the weights may oscillate during the final stages of the
learning, the final cost model is produced by averaging over
the last few iterations.

9 Case Study
Flexible tree matching was inspired by the goal of auto-
matically retargeting Web pages [Kumar et al., 2011]. In
this setting, the matching identifies semantically and struc-
turally similar elements between pages to guide the transfer
of content and design. We selected a corpus of 50 popular
Web pages, and segmented the Document Object Model tree
of each one to produce a hierarchy representative of its vi-
sual structure. In an online study, participants specified 117
matchings between 52 unique pairs of page trees. Then, using
the method described in Section 8, we trained a cost model for
flexible matching on this set.

In this domain, learning a consistent model for tree match-
ing is complicated by the fact that humans do not produce
identical mappings between pages. In our study, humans
matchings are only 78.3% consistent, on average. Nonethe-
less, the flexible matching model is effective in this context,
yielding matchings that average 68.7% similarity (and 77.7%
under the nearest-neighbor metric) in a hold-out test.

Figure 7: Flexible tree matching can be used to retarget Web
pages designed for the desktop to mobile devices. Left: the
original Web page. Right: the page automatically retargeted
to two different mobile layouts.

Figure 8: Flexible tree matching used to rapidly prototype many alternatives. Left: the original Web page. Rest: the page
automatically retargeted to three other layouts and styles.

Most DissimilarMost Similar

Figure 9: The flexible tree matching algorithm can be used to induce a distance metric on the space of Web designs. Comparing
the cost of matching the source page onto each of the targets can differentiate similar and dissimilar designs.

Once the cost model has been learned, the matchings it pro-
duces can be used to guide the transfer of content and design
between pages (Figure 7-8). In addition, the algorithm pro-
vides an approximate distance metric on the space of page
designs (Figure 9). See Kumar et al. [2011] for details.

10 Conclusion
This paper describes a tunable algorithm for flexible tree
matching, with parameters that can be learned via structured
prediction techniques. This algorithm may be useful for
matching in many domains in which hierarchy is suggestive
rather than definitive. We have demonstrated its efficacy on
mapping between Web designs; future work could apply the
technique to other design domains with hierarchical structure,
such as 3D models or graphic design.

References
[Bille, 2005] Philip Bille. A survey on tree edit distance

and related problems. Theoretical Computer Science,
337:217–239, 2005.

[Chawathe and Garcia-Molina, 1997] Sudarshan Chawathe
and Hector Garcia-Molina. Meaningful change detection
in structured data. In Proc. SIGMOD, pages 26–37. ACM,
1997.

[Collins, 2002] Michael Collins. Discriminative training
methods for hidden Markov models: theory and experi-
ments with perceptron algorithms. In Proc. EMNLP. ACL,
2002.

[Demaine et al., 2009] Erik D. Demaine, Shay Mozes, Ben-
jamin Rossman, and Oren Weimann. An optimal decom-
position algorithm for tree edit distance. Transactions on
Algorithms, 6(1):2:1–2:19, December 2009.

[Garey and Johnson, 1975] Michael R. Garey and David S.
Johnson. Complexity results for multiprocessor schedul-
ing under resource constraints. SIAM Journal on Comput-
ing, 4(4):397–411, 1975.

[Kumar et al., 2011] Ranjitha Kumar, Jerry O. Talton,
Salman Ahmad, and Scott R Klemmer. Bricolage:
Example-based retargeting for web design. In Proc. CHI.
ACM, 2011.

[Press et al., 2007] William H. Press, Saul A. Teukolsky,
William T. Vetterling, and Brian P. Flannery. Numerical
Recipes: The Art of Scientific Computing. Cambridge Uni-
versity Press, New York, NY, USA, 3rd edition, 2007.

[Shasha et al., 1994] Dennis Shasha, Jason Tsong-Li Wang,
Kaizhong Zhang, and Frank Y. Shih. Exact and approxi-
mate algorithms for unordered tree matching. IEEE Trans-
actions on Systems, Man, and Cybernetics, 24(4):668–
678, 1994.

[Tai, 1979] Kuo-Chung Tai. The tree-to-tree correction prob-
lem. Journal of the ACM, 26(3):422–433, July 1979.

[Zhang et al., 1992] Kaizhong Zhang, Rick Statman, and
Dennis Shasha. On the editing distance between unordered
labeled trees. Information Processing Letters, 42(3):133–
139, May 1992.

