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Abstract

Designing systems in a service-oriented manner, in which application features are
decoupled and run as independently executing services over a network, is becoming
more commonplace and popular. Service-oriented programming provides a natural
way to model and manage many types of systems and allows software development
teams to achieve operational flexibility, scalability, and reliability in a cost-effective
manner. In particular, it has been used quite successfully for Web and mobile ap-
plications. However, building, deploying, and maintaining service-oriented systems is
challenging and requires extensive planning, more effort during development, a de-
tailed understanding of advanced networking techniques, and the use of complicated
concurrent programming.

This thesis presents a new programming language called Silo. Silo integrates
features that address key conceptual and pragmatic needs of service-oriented systems
that, holistically, are not easily satisfied by existing languages. Broadly, these needs
include: a unified distributed programming model, a simple yet efficient construct for
concurrency, a familiar yet extensible syntax, and the ability to interoperate with a
rich ecosystem of libraries and tools.

In this dissertation, I describe how Silo’s features, constructs, and conventions
satisfy these needs. Then, I present various compiler and runtime techniques used
in Silo’s implementation. Lastly, I provide a demonstration, through a variety of
programming patterns and applications, of how Silo facilitates the design, implemen-
tation, and management of service-oriented systems.

Thesis Supervisor: Sepandar D. Kamvar
Title: Associate Professor

3





Dedicated to my parents,

Dr. Seema Munir and Dr. Jalil Ahmad

5



Acknowledgments

I am incredibly grateful to have had the support of so many brilliant and kindhearted

individuals over the years. This work would have been impossible without them.

• My advisor, Sep Kamvar, for being a constant source of encouragement, in-

spiration, and wisdom. His sincere generosity and genuine care for others is

overwhelming. As a professor, he is an unwavering advocate for all of his stu-

dents and works tirelessly to support their best interests. I greatly value my

relationship with Sep. He is a true role model and a great friend.

• My committee, Armando Solar-Lezama and Daniel Jackson, for their invaluable

feedback and generous advice. Their brilliance was outmatched only by their

kindness.

• My mentors, Scott Klemmer, Jeffrey Heer, Rob Miller, David Karger, and Ran-

dall Davis, for their unwavering support and insightful guidance.

• My friends, colleagues, and collaborators, Peter Woods, Laurel Woods, Ran-

jitha Kumar, and Jerry Talton, for constantly raising my spirits. The Social

Computing group, Yonatan Cohen, Edward Faulkner, Wesam Manasra, Pranav

Ramkrishnan, Kim Smith, and Jia Zhang, for constantly making me smile.

The administrative staff at MIT, Kristina Bonikowski and Janet Fischer, for

constantly saving my neck.

• My family. My loving parents, Seema Munir and Jalil Ahmad. My incredible

sisters, Lubna Ahmad and Minal Ahmad. My kick-ass brother, Rizwan Ahmad.

For always being there with endless love, care, compassion, and trust... and

cookies.

6



Contents

1 Introduction 17

1.1 Service-Oriented Systems . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.1 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Background 25

2.1 Why a New Programming Language? . . . . . . . . . . . . . . . . . . 25

2.2 Design Goals and Language Overview . . . . . . . . . . . . . . . . . . 26

2.2.1 Distributed Programming Model . . . . . . . . . . . . . . . . 26

2.2.2 Efficient and Simple Concurrency . . . . . . . . . . . . . . . . 28

2.2.3 Mature Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.4 Extensible and Familiar Syntax . . . . . . . . . . . . . . . . . 29

2.2.5 Language Overview . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.6 Non-Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Silon: A Familiar Homoiconic Data Format and Syntax 33

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7



3.3.2 Syntactic Sugar . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Formal Grammar . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Use Cases and Capabilities . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Common Language Constructs . . . . . . . . . . . . . . . . . 42

3.4.2 Extensibility with Macros . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Developing Macros . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.4 Use Cases for Macros . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.5 Domain Specific Languages . . . . . . . . . . . . . . . . . . . 54

3.4.6 Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Failure Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Syntactic Gotchas . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 Dangers of Macros . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Comparative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.1 Other Syntaxes . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.2 Grammatical Complexity . . . . . . . . . . . . . . . . . . . . . 60

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7.1 S-Expressions and Lisp Dialects . . . . . . . . . . . . . . . . . 62

3.7.2 Other Homoiconic Programming Syntaxes . . . . . . . . . . . 63

3.7.3 Meta-Programming and Lazy Evaluation . . . . . . . . . . . . 64

4 Silo: A Service-Oriented Programming Language 65

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Location Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Needs of Modern Systems . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Actor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Core Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Immutability . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.3 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8



4.3.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.5 Java Interoperability . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.6 Notable Omissions . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Concurrency and Communication . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Actors and Fibers . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.2 Message Passing Semantics . . . . . . . . . . . . . . . . . . . . 88

4.4.3 Abstracting the Actor API and Selective Receive . . . . . . . 92

4.4.4 Programming with Actors . . . . . . . . . . . . . . . . . . . . 95

4.4.5 Concurrency Models . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.6 Polymorphic Delegation . . . . . . . . . . . . . . . . . . . . . 99

4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.1 Compilation Pipeline . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.2 Runtime Architecture . . . . . . . . . . . . . . . . . . . . . . . 104

4.5.3 Other Features . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Common Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7.1 Basic Networking (HTTP, TCP) . . . . . . . . . . . . . . . . 110

4.7.2 Fan-Out and Fan-In . . . . . . . . . . . . . . . . . . . . . . . 111

4.7.3 Client-Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7.4 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7.5 Monitoring and Fault Tolerance . . . . . . . . . . . . . . . . . 116

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Implementing Coroutines in Silo 121

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.1 Scalable I/O Architectures . . . . . . . . . . . . . . . . . . . . 123

5.2.2 Continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.3 Java Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Continuation Passing Transform . . . . . . . . . . . . . . . . . . . . . 130

9



5.4 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4.1 Custom Stack Frames . . . . . . . . . . . . . . . . . . . . . . 133

5.4.2 Minimizing Method Size . . . . . . . . . . . . . . . . . . . . . 134

5.4.3 Hybrid Trampolining . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6 Case Study: Building a Real-Time Multiplayer Game 147

6.1 Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2.1 Start Up Service . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2.2 Front-End Service . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.3 Game Manager Service . . . . . . . . . . . . . . . . . . . . . . 152

6.2.4 Game Instance Service . . . . . . . . . . . . . . . . . . . . . . 152

6.2.5 Client Side Code . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 Code Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3.1 Directory Organization . . . . . . . . . . . . . . . . . . . . . . 154

6.3.2 Code Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4 Deploying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.4.1 Dedicated Private Servers . . . . . . . . . . . . . . . . . . . . 161

6.4.2 Cloud-Based Servers . . . . . . . . . . . . . . . . . . . . . . . 162

6.5 Comparative Evaluation and Lessons Learned . . . . . . . . . . . . . 163

6.5.1 Positive Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 164

6.5.2 Negative Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Case Study: Renovating a Legacy System 167

7.1 Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.2 Previous Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.4 Updated Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10



8 Future Work 173

8.1 Language Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.2 Development Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.3 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.4 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9 Conclusion 177

11





List of Figures

1-1 An illustration of how Twitter migrated from a monolithic architecture

to service-oriented architecture. Adapted from [23]. . . . . . . . . . . 18

2-1 Silo’s design goals and features compared to other languages. . . . . . 30

2-2 An overview of Silo’s design. . . . . . . . . . . . . . . . . . . . . . . . 31

3-1 A simple program in Lisp and Javascript. Code in Lisp dialects (in-

cluding Scheme, Racket, and Clojure) is written using S-Expressions

and is homoiconic. Code written in Javascript requires a special parser

but is generally considered easier to use. . . . . . . . . . . . . . . . . 35

3-2 The builtin data types in Silon. . . . . . . . . . . . . . . . . . . . . . 38

3-3 Nodes are a composite data type in Silon that have a single label and

a list of children. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3-4 Silon supports infix operators and has syntactic sugar that parses curly

braces as a node with a null label. The equivalent expressions are

shown using S-Expressions as well. . . . . . . . . . . . . . . . . . . . 39

3-5 Silon’s grammar in BNF. . . . . . . . . . . . . . . . . . . . . . . . . . 41

3-6 The precedence table for Silon’s infix operators. . . . . . . . . . . . . 42

3-7 A comparison of binary search implementations in Silon, Javascript,

and Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3-8 The number of rules needed to implement a parser of various languages

using BNF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4-1 Binary search written in Silo with types. . . . . . . . . . . . . . . . . 71

13



4-2 A linked-list data structure written in Silo. . . . . . . . . . . . . . . . 71

4-3 A simple banking application in Java. Java, like many languages, en-

courages memory side effects and often updates method parameters

“in place”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4-4 By default, all values in Silo are immutable. Silo includes syntax that

makes manipulated immutable types easier. . . . . . . . . . . . . . . 75

4-5 Ping-pong program using actors. . . . . . . . . . . . . . . . . . . . . . 87

4-6 The execution semantics of Silo’s actors. . . . . . . . . . . . . . . . . 89

4-7 A visual illustration of the actor API. . . . . . . . . . . . . . . . . . . 90

4-8 Modeling shared mutable state in Silo. . . . . . . . . . . . . . . . . . 96

4-9 Polymorphic delegation allows user code to customize how messages

are delivered. The top example does nothing and simply allows the

message to be sent to another local actor. The bottom example routes

the message through an RPC service to an actor running on another

machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4-10 The Silo compilation pipeline. . . . . . . . . . . . . . . . . . . . . . . 103

4-11 The list of special forms in Silo. . . . . . . . . . . . . . . . . . . . . . 104

4-12 Silo’s runtime architecture. . . . . . . . . . . . . . . . . . . . . . . . . 105

4-13 Silo’s performance compared to Java, Javascript, JRuby, and Ruby. . 107

5-1 Blocking vs non-blocking code in Javascript. Blocking code is often

much more intuitive and easier to understand. . . . . . . . . . . . . . 125

5-2 The JVM is a stack-based virtual machine. It operates by pushing

operands onto a stack, popping them off, and pushing the results. . . 128

5-3 The Silo compiler transforms code so that the execution stack can

“unwind” and then be “rewound”. . . . . . . . . . . . . . . . . . . . . 131

5-4 Silo needs to store local variables as well as the operand stack when

program execution is pausing. One way to do that is to create a stack

frame which holds values in dynamically sized arrays. . . . . . . . . . 133

14



5-5 Silo reifies custom stack frame objects that have fields corresponding

to state of the operand stack and local variables at the call site where

execution yields. An example is object is shown here and corresponds

to a call site where the stack contains an int, a double, and an Object

and there are two local variables, one long and one Object. . . . . . 133

5-6 Silo attempts to reduce the code size of each call site. The figure on

the left is the original call site and the right is the call site after code

reduction. The reduced code size is a constant number of instructions

(in blue) per call site with the exception of the operand stack, which

grows depending on usage (shown in red). . . . . . . . . . . . . . . . 135

5-7 Silo’s performance (top) and memory consumption (bottom) on mes-

sage passing tasks compared to Akka, Erlang, Java (Threads), and the

Java coroutine library. Note the Thread was unable to complete the

“thread-create” benchmark. Also, note the the memory consumption

is log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5-8 A comparison of the code size of various concurrent benchmark pro-

grams written in Silo, Akka (Java) and Erlang. . . . . . . . . . . . . . 140

5-9 HTTP performance in Silo compared to many other languages. . . . . 144

6-1 A screen shot of CardStack, a multiplayer game written in Silo. . . . 149

6-2 CardStack’s architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 151

15





Chapter 1

Introduction

1.1 Service-Oriented Systems

The idea behind a service-oriented system is fairly straight forward – take a complex

system, identity the key features and important units of functionality, and break

them out as “sub-systems” or “services” that run concurrently and communicate

with one another by passing messages. This approach has been proposed, used, and

rediscovered under different names countless times in the past [89, 43, 87, 48].

A distinctive attribute of modern service-oriented systems is that they are dis-

tributed and run across many machines communicating over a network. As CPUs

reach their limits in terms of sequential performance many applications are forced to

leverage multiple machines to scale. Additionally, service-oriented systems align well

with the trend towards cloud computing where application developers rent machines

from hosting providers on a per-usage-basis [51, 52].

This thesis is particularly interested in systems that power applications deployed

over the Web. These systems routinely have to handle a large number of concurrent

requests, changing product requirements, low budgets, and rapid growth. Within

this space, some of the largest and most successful software organizations in industry

often discuss their use of service-oriented architectures and indicate that it was critical

for their operational successes [23, 10, 101, 49]. The service-oriented approach for

building these types systems is contrasted by multitiered systems (sometimes referred

17
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Figure 1-1: An illustration of how Twitter migrated from a monolithic architecture
to service-oriented architecture. Adapted from [23].
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to as monolithic systems) which organize software components into layers within a

single process (as opposed to multiple processes). Figure 1-1 illustrates the differences

between service-oriented architectures and multitiered architectures in practice.

1.1.1 Benefits

Building systems in a service-oriented manner confers many benefits.

• Modularity Many systems are naturally modeled in a service-oriented manner

as they logically compose multiple independent sub-systems. For example, it

is common for a modern application to have a Web site, a mobile API, an

email sub-system that sends out email to users, etc. These types of systems are

best implemented as multiple separate services running in parallel rather than

packing all of the functionality into a single monolithic program. Also, from a

management perspective, it provides a natural way for dividing software teams

and assigning responsibilities.

• Flexibility Service-oriented systems allow development teams greater flexibil-

ity when dealing with operational challenges, coping with changing product

requirements, and adopting newer technologies [10]. For example, suppose the

developers of a streaming music site want to provide song recommendations to

their users. Instead of having to make intrusive changes to their existing code

base, the recommendation feature could be implemented as a separate service

that runs on its own. As a new feature, the recommendation service will likely

receive more changes and updates than the rest of the system. Making these

updates is much easier in a service-oriented system (compared to a monolithic

system) since only the recommendation service will need to be upgraded and

the rest of the system continues with no downtime. Additionally, the devel-

opers do not need to worry about the hardware requirements or proactively

provision new machines in anticipation of the feature going live. Instead, they

can run the service on any existing box and make the service accessible to only

19



a small number of “beta-testers”. As the developers gain confidence in the fea-

ture, they can move the recommendation service onto its own hardware. Lastly,

the recommendation system will likely need a special purpose database that is

optimized for numerical computations. Instead of feeling tempted to use their

tried-and-true database of choice, developers are encouraged to explore new

database solutions for the recommendation service since the service is indepen-

dent of the rest of the system and thus allows the developers to be more tolerant

of errors and failures.

• Scalability Service-oriented programming gives developers greater freedom to

optimize the performance of their system and utilize computational resources

more intelligently. For example, if an application’s search feature takes a long

time to process queries, the search service can be moved independently onto a

machine with more memory and a faster CPU while the system’s other services

will remain running on more economical hardware. As another example, if the

authentication service is a bottleneck in the system, the developers may choose

to provision more machines that run the authentication service.

• Reliability Since services operate independently from one another, a failure or

bug in one service does not crash the entire system [27]. Crashes, performance

bottlenecks, and security concerns are isolated to a single service rather than

spreading. For example, if the server running the search service for a shopping

Web site has a power supply failure, users may not be able to search for new

products but they can still log in to their account, track existing shipments,

and write reviews.

1.1.2 Challenges

Despite the benefits of the service-oriented architectures, there are notable challenges.

• Difficult to Build Service oriented systems are notoriously hard to imple-

ment [23, 119]. Instead of having a single program, the functionality of service-
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oriented systems is broken up across many programs and code bases. Addition-

ally, developers need an in depth and advanced understanding of networking

(technical details, techniques, libraries, etc.) and concurrency (thread pools,

event loops, synchronization, race conditions, etc.). Moreover, developers are

forced to write code in a manner that forgoes many of the comforts and con-

veniences of other programming paradigms. For example, invoking a service is

not as straight forward as calling a method. The service call may be dropped

by the network, arrive out of order, be corrupted, or be duplicated. Developers

need to write robust code that handles these numerous sources of error.

• Difficult to Manage Service-oriented systems involve a lot of moving parts

that are difficult to manage. To run a system you need to start up many different

services, handle failures from multiple sources, and monitor the behavior of

numerous processes. This works well when the development team is large and

can divide responsibilities amongst many developers. But a small team that is

growing will find it hard to remain agile.

• Difficult to Change The flexibility afforded to developers is balanced against

ensuring appropriate technical integration between sub-systems. In other words,

service-oriented systems are often rigid. Making changes that “cut across” many

different services is quite challenging [23]. Additionally, once services are defined

and established, it is hard to then break them up into smaller services or merge

them into a new larger service. This makes service-orientation less attractive to

early stage projects or companies where there is a lot of uncertainty or where

budgets are tight.

A a rule of thumb, there general tradeoff is fairly clear: service-oriented architec-

tures are powerful but difficult to use. Ultimately, what is needed is an approach that

balances power with ease-of-use and lowers the technical barriers to entry.
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1.2 Thesis Statement

The thesis of this dissertation is that new languages can simplify the design, imple-

mentation, and management of service-oriented systems and should support service-

orientation as a first class programming paradigm. Most languages provide metaphors

that abstract memory access, CPU control flow, and concurrency. This thesis argues

that additional steps should be taken to abstract communication and distribution as

well. Service-oriented systems are becoming increasingly relevant in the era of cloud-

computing and the current technology trends indicate that service-oriented program-

ming will continue to be important in the future.

1.3 Contributions

The core contribution of this thesis is a new programming language called Silo. Unlike

most existing languages which are intended to coordinate the execution of a single

operating system process running on a single machine, Silo is designed to model large

systems that run across many machines connected by a network. To achieve this goal,

this thesis presents the following contributions:

• Design Goals This thesis first identifies a core set of design goals that should

govern the design of service-oriented programming languages (Chapter 2). These

design goals address conceptual, technical, and pragmatic issues when building

service-oriented systems.

• Familiar Homoiconicity Silo’s novel syntax is easy-to-use and similar to pop-

ular languages that are familiar to most developers (Chapter 3). However, the

syntax is also highly versatile and extensible. It allows developers to easily

extend the language’s core syntax with new constructs that can improve per-

formance as well as developer productivity. This is particularly important for

building service-oriented systems which tend to be diverse and could greatly

benefit from custom language constructs.
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• Location Transparency Silo’s programming model is designed such that pro-

grams can be easily “broken apart” and moved between machines with ease

(Chapter 4). Additionally, Silo’s incorporates a novel communication mech-

anism that is extensible and can be used in virtually any environment from

privately owned server clusters to the cloud. This greatly simplifies many of the

challenges of service-oriented programming.

• Efficient Coroutines Building scalable I/O-bound systems is challenging. De-

velopers are often forced to choose between the intuitiveness of blocking code

and the performance of event-driven code. Silo provides a balance between

these two approaches using coroutines and presents novel techniques for com-

piling coroutines on the Java virtual machine (Chapter 5).

Additionally, this dissertation contributes numerous examples of sample code,

programming patterns, and use cases that demonstrate Silo’s utility, usability, and

efficiency. In particular, two case studies are presented that describe how Silo can be

used during the design, implementation, and deployment of software systems.

• Updating a Legacy System I discuss how to migrate an existing Java-based

application to Silo (Chapter 7).

• Building a New System I discuss how to build new systems from the ground

up using Silo (Chapter 6).

1.4 Outline

Chapter 2 identifies the main design goals for a service-oriented programming lan-

guage and, in particular, how these goals differ from those found in many existing

languages. Chapter 3 introduces Silon, a data format and programming syntax that

serves as the syntactic foundation of Silo. Chapter 4 introduces Silo, a new pro-

gramming language for building service-oriented systems and discusses its design, its

programming model, and how it implements many common tasks. Chapter 5 dis-

cusses Silo’s implementation and includes various optimization and transformation

23



techniques used both during compilation and at runtime. Chapters 7 and 6 present

case studies about building systems with Silo. Chapter 8 presents avenues for future

work.
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Chapter 2

Background

2.1 Why a New Programming Language?

Service-oriented programming is important but it can also be challenging. It makes

sense to explore solutions for facilitating the creation of service-oriented systems.

However, why a new programming language? Why Silo?

A key reason why I argue that a new programming language is not only warranted

but overdue is that the primary programming protocols used in service-oriented pro-

gramming do not have natural analogs in existing programming languages. Most

existing languages are organized around features like functions, objects, closures,

monads, etc. However, in service-oriented programming, the primary programming

protocol is distributed and asynchronous message passing, the exact semantics of

which are not naturally representable in most languages. Even so called “message-

passing” languages like Smalltalk, Ruby, and Objective-C are quite different: mes-

sages are guaranteed to be delivered and processed synchronously [38, 34, 61]. As a

result, service-oriented systems are awkward and verbose to write in many existing

languages because the manner in which these systems are designed does not align

with existing language features.

It is, of course, possible to implement asynchronous message passing libraries

and distributed programming frameworks in existing languages (most programming

languages are, after all, Turing complete). However, this misses an important point.
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Languages do not just provide convenient programming features but also establish

essential conventions and idioms. A good analogy to this is garbage collection. There

are many ways to manage memory without garbage collectors (e.g. reference counting,

smart pointers, private allocators). However, garbage collected languages greatly

simplify development by ensuring that all code can interoperate with ease. Developers

do not need to worry about the memory conventions of each function they call; rather,

they can rest easy knowing that the language-wide conventions and semantics are

guaranteed to be enforced. Likewise, with a service-oriented programming language,

developers do not need to mentally switch back and forth between programming styles

and constantly consider which features they can and cannot use.

In short, service-oriented programming represents a style of development that is

not naturally or consistently expressible with existing languages.

2.2 Design Goals and Language Overview

Four core goals drove the design and development of Silo: distributed programming,

efficient and simple concurrency, extensible syntax, and interoperability with a mature

ecosystem. While some of these goals are shared with other programming languages,

it is important to achieve all these goals simultaneously, without falling victim to

design incompatibilities.

2.2.1 Distributed Programming Model

Description A hallmark feature of a modern service-oriented architecture is that

different services run on different machines connected by a network. Thus a

service-oriented programming language should make distributed programming

easier. In particular, distributed programming should be unified throughout

the design of the entire language and not just relegated to a simple RPC (re-

mote procedure call) or networking library. The programming protocols used

for local development should generalize and should be usable in a distributed

environment as well. As a rule of thumb, a distributed programming model
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should enable any part of an existing non-distributed program to be readily

“broken off” and moved to another machine without any trouble. This ability

is called “location transparency”.

Silo’s Approach Silo is built on the Actor model [45, 4]. Actors run concurrently,

cannot share memory and can only communicate by passing messages, thus

mirroring the realities of distributed systems. Silo’s message passing capabilities

are also extensible and allows developers to customize the protocols, encodings,

and techniques used when sending messages between actors. Additionally, Silo’s

conventions, idioms, and standard libraries greatly discourage the use of mutable

shared state. In fact, unless developers go to extraordinary lengths, values

in Silo are always immutable, including core data structures like vectors and

dictionaries. This makes it much easier to “break apart” an application since

values can be passed to a function with the same semantics as being passed to

another machine. This is in contrast to most imperative programming languages

in which code is architected around large mutable in-memory object graphs. In

these cases, sending an object to a remote machine is often of little use since

the object is generally dependent on other objects in the graph and cannot

be used in isolation. Furthermore, coordinating and synchronizing the object

graph across many computers is difficult and in some cases impossible [19].

Silo’s design goes to great lengths to ensure that all language features, conven-

tions, and idioms are equally available and useful whether the system is run

on a single machine or many machines. In particular, it avoids the trap in

which a language originally designed for local development is retrofitted with

distributed capabilities as this approach rarely works in practice [59]. In other

words, Silo prevents developers from designing systems in a manner that is hard

to distribute and makes an implicit promise to its users: if you can figure out

how to model a system using Silo, Silo promises that the system can be split

up and run across many machines with ease.
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2.2.2 Efficient and Simple Concurrency

Description A service-oriented system consists of multiple services running inde-

pendently from one another. Consequently, it should be no surprise that a

service-oriented programming language should make concurrency easy and effi-

cient.

Silo’s Approach Silo provides an actor-based concurrency model that is optimized

for message-passing concurrency.

Each actor executes on its own with its own stack and communicates by passing

messages to other actors. Each actor processes a single message at a time and

Silo discourages the use of shared memory between actors which eliminates

many of the typical challenges of concurrent programming like race conditions

and synchronization errors [84]. It also allows actors to be scheduled across

many threads (or even different machines) to achieve greater parallelism.

Additionally, Silo is optimized for message-passing workloads as services spend

a lot of time sending messages to one another. Just using threads for these

types of workloads (i.e. processing each message on its own thread) is less than

ideal because sending and receiving messages takes a long time and blocks the

thread from processing other messages or doing other useful tasks [86, 126, 29].

As a result, many developers often handle messages in a non-blocking manner

inside event loops which dispatch “events” to “handlers” as they occur. This

reduces the number of threads and eliminates the overhead of context switches

but it requires logic to be broken up across multiple callback functions leading

to “callback hell” in which code is difficult to maintain [3, 125, 41].

Silo balances these two approaches using coroutines. A coroutine is a function

that can pause and resume and can do so much more efficiently than a thread

[25]. Silo actors run on coroutines (which are multiplexed across a fixed number

of threads for parallelism) and whenever an actor blocks to receive a message it

pauses the coroutine and frees the underlying thread to execute other coroutines

instead. When an actor receives a message, its coroutine is resumed. This allows
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straight-forward blocking code to reach the performance of non-blocking event-

driven code.

2.2.3 Mature Ecosystem

Description Systems these days, especially the ones deployed for handling Web and

mobile applications, are remarkably diverse. It is not uncommon for a Web

service to incorporate different types of programming tasks including machine

learning classification, database querying, image analysis, etc. Supporting these

diverse needs in practice requires the ability to easily integrate with a mature

ecosystem of existing library and tool.

Silo’s Approach Silo compiles to JVM bytecode [63] and makes it trivially easy

to interoperate with Java’s rich ecosystem of libraries, frameworks, other lan-

guages, and tools.

2.2.4 Extensible and Familiar Syntax

Description Due to the diversity of service-oriented systems it is important for a

language to incorporate an extensible and easy to use syntax. Different syntaxes

are useful for different purposes. The code that is intuitive for matrix multi-

plication is different from the code for querying a database or declaring rules

for a security policy. A service-oriented programming language must accept

the inevitability that the language designers cannot predict the diverse needs of

developers. Thus, the language should provide a syntax that is flexible and easy

for developers to extend for their own purposes. As a rule of thumb, any spe-

cial syntactic constructs that I, as a language designer, would personally want

to implement to support Silo’s goals of simplifying distributed or concurrent

programming, should be possible to achieve without special support from the

parser or the compiler. In other words, to keep myself honest I am only allowed

to use language features that are also accessible to the end user.
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Concurrency Distribution Ecosystem Syntactic!
Extensibility

Syntactic!
Familiarity

Silo ○ ○ ○ ○ ○

Erlang ○ ○ ○␣ ○␣ ○␣
Ruby / Python ○␣ ○␣ ○ ○ ○

PHP / Javascript ○␣ ○␣ ○ " ○
Java / C# / Scala " ○␣ ○ " ○

Go / Rust ○ ○␣ " " ○
Haskel / Racket ○ " " ○ ○␣

OCaml / F# ○ " " " ○␣

○ Strong Support " Medium Support ○␣ Poor SupportLegend

�1

Figure 2-1: Silo’s design goals and features compared to other languages.

Silo’s Approach Silo achieves extensibility by introducing a syntactic notation that

is homoiconic. Homoiconicity means that the language’s syntax is represented

using a built-in datatype of that same language [76]. This means that Silo

programs can easily analyze, inspect, and change their own internal structure.

This allows developers to easily extend the language with new constructs and

syntactic forms.

2.2.5 Language Overview

While some of Silo’s design goals are shared with other programming languages it is

important that all of them be satisfied simultaneously, which turns out to be quite

tricky in practice. For example, languages like Ruby provide meta programming

capabilities to change the behavior and methods of objects at runtime which allows

for flexible syntaxes and embedded DSLs. While this works great for scripting tasks,

meta programming in this manner is not possible in a distributed environment since

it relies on mutable shared state. Figure 2-1 highlights how Silo’s design compares to
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Figure 2-2: An overview of Silo’s design.

other languages. This figure is not intended to be critical of any particular language;

rather, it speaks to a broader point that service-oriented programming is an important

niche that is being underserved and there is a great opportunity for new languages

to be helpful.

Furthermore, a summary of Silo’s design, features, and how they relate to the

challenges and needs of service-oriented systems is shown in Figure 2-2.

2.2.6 Non-Goals

When designing a new programming language it is easy to get carried away and lose

focus on a core set of features. Towards that end, it is important to be clear and

upfront about non-goals of the language as well.

First, the language is a language. It is not a framework or a library. It attempts

to provide a strong foundation to build larger more expressive abstractions but that

is outside the scope of this thesis. In particular, Silo is not a Web framework. Web

frameworks can be written in Silo but Silo does not support or encourage a particular

style of Web development.

Second, Silo is envisioned primarily as a server-side language. With the growth of

mobile and client-side applications there is a lot of interest in using a single unified

language for both front-end and back-end development. While I can certainly appre-

ciate the appeal of this approach it is not a goal for Silo. Silo is designed to make it

easy to build network-driven server-side applications. If the language can be adopted
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and used for client-side development, all the better! But it is not the goal of this line

of research.

Third, Silo is not Java. It is true that Silo compiles to JVM bytecode but this

does not mean that Silo is intended to be a Java-replacement. Moreover, this does

not mean that Silo is an object-oriented programming language at all. Silo does in-

clude several ideas and features that are borrowed from traditionally object-oriented

programming but it does not intend to provide all features like classes, inheritance,

abstract classes, etc. If absolutely necessary, it is possible to access these features

through Silo’s interoperability with Java but writing code in this manner is unid-

iomatic and considered bad form; rather, developers are encourage to embrace Silo’s

conventions and idioms.
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Chapter 3

Silon: A Familiar Homoiconic Data

Format and Syntax

The syntax for Silo was heavily influenced by Lisp. However, Lisp’s syntax, repre-

sented using S-Expressions, is often criticized as being hard to use for many develop-

ers. This is unfortunately because Lisp is homoiconic, in which a language’s syntax

is expressed using a builtin data structure of that same language, making it possi-

ble to process and manipulate application source code easily and enabling powerful

extensibility and meta-programming capabilities. This chapter introduces Silon, a

notation for programming syntaxes that balances the power of homoiconicity with

the ease-of-use and familiarity of C-like languages. Silon is easily implementable,

versatile, capable of expressing most programming constructs and is used in the Silo

programming language.
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3.1 Overview

Homoiconicity is a property of certain programming languages in which the language’s

syntax is represented using a builtin data type of the same language [76]. As a result,

homoiconic programming languages are able to easily inspect and analyze their own

internal structure (often referred to as an AST, abstract syntax tree) just as easily as

they can manipulate an array or string. Having access to the AST enables powerful

programming features like macros (special functions that extend a language’s compiler

by “expanding” code into a new form), meta programming (where a program is able

to re-program itself), domain specific languages (implementing a language inside of

another language), code analyzers (static error checkers, linters, etc.), and others

[62, 118, 35].

Unfortunately, the benefits of homoiconicity come at a cost. A notation that is

good at representing an AST is rarely conducive as a syntax for programming. As

an example, Lisp, perhaps the most famous homoiconic language, has a syntax that

only uses nested list expressions called S-Expressions [100]. S-Expressions are perfect

for representing an AST but require a large number of parentheses to represent most

programming constructs. As a result, Lisp is commonly described (often humorously)

as being difficult to use for many tasks [96]. On the other hand, most mainstream

programming languages (C, Java, Python) are not homoiconic and use special parsers

that transform source code into an AST before that AST is passed to the compiler.

This allows language designers to provide special support for common programming

constructs (control structures, function declarations, etc.) that are more familiar and

easier to use. In general, many developers prefer C-like syntaxes to Lisp. As an

example, Figure 3-1 shows a comparison between Lisp and Javascript.

I present Silon, a notation for homoiconic programming syntaxes that retains a

resemblance to C-like languages. Silon allows developers to enjoy the benefits of

homoiconicity while working with a syntax that they are familiar with and that is

easy to use. In this chapter, I make the following contributions:

• Present a formal specification for Silon (Section 3.3). Notably, this specification
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% Lisp

(define (add-if-all-numbers lst)

(call/cc

(lambda (exit)

(let loop ((lst lst) (sum 0))

(if (null? lst) sum

(if (not (number? (car lst))) (exit #f)

(+ (car lst) (loop (cdr lst)))))))))

// Javascript

function addIfAllNumbers(list) {

var sum = 0

for(i in list) {

if(typeof(list[i]) == "number") {

sum = sum + list[i]

} else {

return false

}

}

return sum

}

Figure 3-1: A simple program in Lisp and Javascript. Code in Lisp dialects (including
Scheme, Racket, and Clojure) is written using S-Expressions and is homoiconic. Code
written in Javascript requires a special parser but is generally considered easier to
use.
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includes a thin layer of syntactic sugar (infix operator notation and decorative

markings) that makes Silon easier to use than traditional homoiconic syntaxes

while preserving simplicity.

• Demonstrate Silon’s utility and ease-of-use through a series of examples and use

cases as well as articulating common sources of confusion and frustration that

developers should be aware of (Sections 3.4 and 3.5).

• Perform a comparative analysis between Silon and other notations that indicate

that Silon is easy to use and is simple to implement (Section 3.6).

3.2 Design Goals

Silon primarily serves as the syntax for Silo1, a programming language for building

distributed service-oriented systems. To service the diverse needs of these types of

systems Silon was designed to support programming syntaxes that balance three

goals: expressivity, usability, and simplicity.

Expressivity Silon should support syntaxes that are expressive and versatile.

Since the needs of large systems are diverse and constantly changing, designing a

syntax with special constructs for all conceivable use cases is not practical. Instead

the syntax should be inherently extensible so developers can customize it to their

needs by creating their own syntactic constructs and language abstractions. For

example, developers of database-centric Web applications should be able to create

constructs that facilitate writing complex database queries. Additionally, a large

part of building systems requires editing configuration files. As such, Silon should be

able to function not only as a programming syntax but as a data format as well.

Usability Silon should be easy to use and support language syntaxes that are

understandable, writable, and maintainable. As systems and codebases continue to

grow, having usable programming language is of vital importance.

1The name “Silon” stands for “Silo Notation”.
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Simplicity Silon needs to be a simple syntax that is easy to parse, both for

humans and for computers. This is important for building tools that analyze or

process application code (e.g. documentation tools, package builders, static error

checkers, syntax highlighters, IDEs). Additionally, since Silon is intended to be used

as a data format as well as a programming syntax, it is important that Silon be simple

so that parsers in other languages are easy to write.

Reconciling these three goals and finding a balance is challenging. For example,

Ruby has an expressive and easy-to-use syntax but its grammar is far from simple.

Likewise, CSS is easy-to-use and has a simple format, but it lacks the expressivity of

a general purpose programming syntax.

3.3 Specification

The approach for creating Silon started by defining a simple and lightweight unicode

data format (rather than a programming syntax) and slowly adding features to achieve

expressivity and usability. Silon achieves expressivity through homoiconicity and

achieves understandability through a thin layer of syntactic sugar, which comes at

negligible cost to simplicity, thus balancing the three design goals.

3.3.1 Data Types

Silon is a built on the small set of atoms shown in Figure 3-2. Each of these atoms

are easily supported in virtually all modern programming languages and are mostly

self-explanatory. Nodes, however, deserve special attention.

Nodes are a tree-like structure that have a label and a list of children (Figure 3-

3). Both the children and the label can be any other Silon atom, including another

node. Syntactically, a node is represented using a balanced pair of open and closed

parentheses. A node’s label is placed immediately before the open parenthesis and

its children are placed inside the parenthesis separated by either a newline character,

comma, or semicolon. If a node’s label is omitted then it is assumed to be null.

Additionally, while the separator between the children can be omitted and replaced
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Atom Example

Null null
Boolean true, false
Integer 2, 512, 1024
Long 2L, 512L, 1024L
Float 3.14159f
Double 3.14159, 2.71828d
String “Hello, World”
Symbol PI, System, printLine, user_name, x
Node print(“Hello, World”)

Figure 3-2: The builtin data types in Silon.

foobar(baz(), fizz())
Label Children

foobar(baz(), fizz())(1 3.14)

Label Children
Label Children

Whitespace

do(
    open("backpack"); take("food"), eat("lunch")
    print("yum!")
)

NewlineCommaSemicolon

()

Empty childrenNull label

Figure 3-3: Nodes are a composite data type in Silon that have a single label and a
list of children.
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Sugar Form Silon Expanded Form S-Expressions

x + y +(x, y) (+ x y)

a + b * c +(a, *(b, c)) (+ a (* b c))

(a + b) * c *((+(a, b)), c) (* (+ a b) c)

a = b + c =(a, +(b, c)) (= a (+ b, c))

{} () ()

Console.print("Hi") .(Console, print)("Hi") ((. Console print) "Hi")

Figure 3-4: Silon supports infix operators and has syntactic sugar that parses curly
braces as a node with a null label. The equivalent expressions are shown using
S-Expressions as well.

with any whitespace character; however, this may change the way the expression is

parsed. For example, a(b() c()) is the same as a(b(), b()) but a(b ()) (note

the spaces) is not the same as a(b, ()).

3.3.2 Syntactic Sugar

Two common criticisms leveled against Lisp is that it lacks infix operators and it is

often hard to visually distinguish user code from language constructs because every-

thing is represented using nested parentheses [32]. Silon addresses these concerns by

introducing a thin layer of syntactic sugar.

Silon allows symbols that contain operators to be used with infix notation. Sym-

bols are general-purpose identifiers. They are similar to strings but are not wrapped

with quotes and therefore cannot contain whitespace characters (Figure 3-2). While

symbols are mostly alphanumeric (e.g. variable names), they can also contain op-

erators like . (dot), +, -, and =. However, a symbol containing an operator must

only contain other operators. When an “operator-symbol” appears between two Silon

expressions, it will be parsed as a node with the two expressions as its children and

the operator as its label. For example, 5 + 5 will be parsed as +(5, 5). The order of
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operations in Silon are generally similar to most mainstream programming languages

like C and Java. The precedence table is shown in Section 3.3.3 and additional exam-

ples of infix operators, along with a comparison to Lisp’s S-Expressions, are shown in

Figure 3-4.

Silon also parses curly braces as a node with a null label (Figure 3-4). Curly

braces are used idiomatically to denote blocks of code similar to C-like languages.

Curly braces function as decorative elements that make it easier to skim large chucks

of code and distinguish blocks of code from language constructs (control structures,

definitions, etc.).

Beyond these two forms of syntactic sugars, Silon does not contain any other

special syntax exceptions that developers need to be aware of. I felt that this was a

good balance of keeping Silon simple while also being able to serve as a syntax for a

practical programming language.

3.3.3 Formal Grammar

A formal specification for Silon is shown in Figure 3-5 in BNF syntax. The precedence

table for infix operators is determined by the starting prefix of the operator and

described in Figure 3-6. All operators are left associative except for operators that

contain an equals sign (=) which are right associative.

3.3.4 Implementation

The reference implementation of the Silon parser was built using Java and ANTLR

(an LL(*) parser generator) [88]. This implementation is not particularly optimized

for performance (conformance to the spec and understandability of the source code

took precedence) but it is quite efficient for most practical applications and is able

to parse a 8MB file in 3 seconds. Put in perspective, the parser can process the

entire Silo standard library in around 500ms. All of the applications presented in this

dissertation use this reference implementation.
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1. silon-expression

2. : silon-expression operator-symbol silon-expression

3. | value;

4. value

5. : node | symbol | string | number

6. | 'true' | 'false' | 'null';
7. node

8. : '(' ')'
9. | value '(' ')'
10. | '(' children ')'
11. | value '(' children ')'
12. | '{' children '}';
13. children

14. : silon-expression

15. | silon-expression children

16. | silon-expression terminator children;

17. symbol: letter-symbol | operator-symbol;

18. letter-symbol: letter | letter symbol;

19. operator-symbol: operator | operator operator-symbol;

20. string: '"' '"' | '"' chars '"';
21. chars: char | char chars;

22. char

23. : Any Unicode character except '"' and '\'
24. | '\"' | '\\' | '\b' | '\f' | '\n' | '\t' | '\r'
25. | '\u' (0x0000 ... 0xFFFF);

26. number: int | long | double | float;

27. int: digits | '-' digits;

28. long: int 'L';
29. double: real | real 'd';
30. float: real 'f';
31. fraction: '.' digits;

32. exponent: e digits;

33. e: 'e' | 'e-' | 'e+' | 'E' | 'E-' | 'E+';
34. digits: digit | digit digits;

35. digit: '0' ... '9';
36. real

37. : int '.'
38. | fraction

39. | int fraction

40. | int exponent

41. | int fraction exponent;

42. letter

43. : 'a' ... 'z'
44. | 'A' ... 'Z'
45. | '$' | '_'
46. | Unicode Categories Ll, Lu, Lo, Lt, Nl;

47. operator

48. : Ascii 0x21 ... 0x7E

49. excluding letters, terminators, braces, and parenthesis

50. | Unicode Categories Sm, So

51. excluding braces and parentheisis;

52. terminator

53. : ',' | ';' | '\n' | '\t';

Figure 3-5: Silon’s grammar in BNF.
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Operator Prefix Associativity

. :: Left

| # Left

! Left

: Left

=> Left

* / % Left

< <= > >= != == Left

&& Left

|| Left

= |= := Right

(all other operators) Left

Figure 3-6: The precedence table for Silon’s infix operators.

3.4 Use Cases and Capabilities

This section discusses how many programming language constructs, features, and

capabilities are naturally represented using Silon as a syntax. To illustrate this point,

it includes many code fragments and describes language implementation details that

are specific to the Silo programming language. While Silo and Silon were designed in

tandem they are not exclusive to each other. Silo’s semantics could be provided using

a different syntactic representation and Silon could be used as a syntax for building

other languages that are different from Silo. Thus, the examples in this section are

illustrative and not prescriptive.

3.4.1 Common Language Constructs

Silon expressions are built by combining and nesting the builtin data types in different

ways. The figure below shows a simple program that highlights some of the essential

programming constructs like local variable assignment, control structures, functions,

namespaces, and others.
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i : int = 0

while(shouldContinue() {

if(i % 2 == 0 {

print("Tick")

} else {

print("Tock")

})

i = i + 1

})

3.4.2 Extensibility with Macros

An important attribute of Silon’s homoiconicity is that programs can manipulate a

structured representation of code. This allows developers to extend a compiler using

macros that expand code of one form into another form. As a motivating example, a

for-loop can be implemented by expanding code into a while loop and an if statement

as shown below:

// A for loop like this...

for(i : int = 0; i < 5; i = i + 1 {

println(i)

})

// ... can be re-written as a while loop

i : int = 0

while(i < 5 {

println(i)

i = i + 1

})

Thus, for-loops in Silo can be implemented using a macro. To be clear, this means

that the for-loop in Silo is actually implemented in Silo itself and does not require
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any special support from the parser, compiler, or runtime. The for-loop macro is

shown below using the transform construct which simply “copies and pastes” code

fragments into a code template. This is an easy way to implement many types of

macros and is similar to the C-preprocessor.

transform(for(init, condition, end, body) {

init

while(condition {

body

end

})

})

Interestingly, underneath the scenes, the transform construct is actually just a

macro itself. Formally defined, A macro is any function that accepts one or more Silon

expressions as input and returns a single Silon expression as output. The transform

macro is simply a “helper macro” that facilitates a common use case, namely, taking

multiple parameters and inserting them at certain placeholders within a template.

However, macros are Turing complete and can perform any arbitrary computation as

long as they return a valid Silon expression.

The canonical representation of a macro in Silo is a function that is annotated with

the macro flag. For example, the implementation of the while macro is show below.

The while macro is more barebones and low-level when compared to the for-loop

because many of the higher-level syntactic constructs (for example, the transform

macro) are implemented using the while macro and, thus, are not available for use.

function(

name(while)

macro

inputs(condition, body)

outputs(silo.lang.Node)

{
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b : java.util.Vector = java.util.Vector()

b#add(condition)

b#add(body)

b#add(silo.lang.Node(silo.lang.Symbol("break")))

l : java.util.Vector = java.util.Vector()

l#add(silo.lang.Node(silo.lang.Symbol("branch"), b))

silo.lang.Node(silo.lang.Symbol("loop"), l)

}

)

Transforming code from one form into another is a powerful abstraction; however,

at some point, these transformations need to end and yield a canonical representation

that the compiler understands and can compile into machine code. These representa-

tions are called “special forms”. Special forms represent a low-level set of expressions

that could otherwise not be implemented using a function or a macro. For example,

the branch statement cannot be implemented using a function (since its arguments

need to be lazily evaluated) or a macro (because a macro can only transform code

into a new form which is not helpful if a “branch form” is not available). Thus branch

is implemented as a special form inside the compiler itself. Using the branch special

form, developers can now add more familiar constructs like if-else statements, switch

statements, and pattern matching without support from the compiler. This allows

the core compiler to remain simple as it only needs to be aware of a handful of special

forms. As an example, Silo’s compiler only implements thirty special forms. The

exact number and purpose of these special forms will vary drastically between com-

pilers but as a general practice, most compilers will typically include special forms so

as to expose all the features and functionality of the underlying target platform or

instruction set (x86, JVM bytecode, etc.).

As can be seen, macros are powerful and can be used by developers to add new

syntactic constructs to a language without cooperation or special support from the
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compiler. In fact, most common programming constructs are implemented as macros

(func, while, if, and others).

3.4.3 Developing Macros

Silo includes many constructs to facilitate the development of macros. The quote

construct accepts a single Silon expression and returns an expression that, when

compiled and run, yields a literal representation of that same expression. For example,

if a developer wanted to create an expression for the literal a + b they could use the

following code:

a : int = 5

b : int = 10

println(a + b)

println(quote(a + b))

This code will first print out “10” since the compiler will actually execute the

code. However, the second print statement will print out “+(a, b)” since the quote

macro returns its argument exactly as it appears (unaltered and unevaluated), hence

the name “quote”. However, sometimes it is useful to insert an evaluated expression

into a Silon literal. This can be done using the escape inside of a quoted expression.

escape is not a special form; rather, the quote macro scans over its argument and

whenever it finds a node labeled escape it allows the expression to be evaluated by

the compiler. For example:

a : String = "foo"

b : String = "bar"

println(quote(a + escape(b)))

will print “a + bar” since the b variable is escaped and will be evaluated with respect

to the surrounding context. As an interesting edge case, one may ask how to quote an

expression that yields “a + escape(b)”? The following code fragment demonstrates

this.
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quote(a + escape(quote(escape))(b))

This code works because the quote macro searches for a node with a label called

“escape”. However, the symbol “escape” is treated like any other symbol. Thus, the

code first escapes the literal symbol “escape” and then uses it as the label of a node

that has a symbol “b” as its argument. In certain ways, it parallels the use of “double

backslash” escape sequences in C string literals.

The quote macro is a useful construct at creating snippets of code. An excellent

example of the quote macro in use is the macro macro. The macro macro is syntactic

sugar that allows developers to declare a macro without having to resort to the the

verbose function special form (as shown previously with while). A “max” macro

can be defined as such:

macro(max(a, b) {

// Code omitted.

})

The implementation of the macro macro is similarly straight forward:

function(

name(macro)

macro

inputs(id : Object, body : Object)

{

quote(silo.core.func(escape(id), escape(body), Boolean.TRUE))

}

)

An interesting take away from this example is the use of the fully qualified name

“silo.core.func”. Macros (like func) are functions and (unlike special forms) are orga-

nized into namespaces and packages to avoid name clashes. Using unqualified names

can lead to awkward and difficult to debug bugs. For example, the following code

may not do what the developer expects:
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package(example.library)

func(println(a) {

file.append(file.open("log.txt"), a)

})

macro(log(a) {

quote(println(escape(a)))

})

In this example the developer created their own println function that appends to a

log file. They also created a macro called log to inline calls to this println function.

Thus, the following code:

package(example.app)

func(start {

log("Hello, World!")

})

is expanded to:

package(example.app)

func(start {

println("Hello, World!")

})

The problem is now perhaps more evident. The user code is not inside the “ex-

ample.library” package and thus when the expanded form is compiled the println

inside of silo.core (one of the default packages that is included automatically) will

be called rather than example.library.println. To correct the issue, the macro

developer needs to be mindful of this and use the fully qualified form:
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package(example.library)

macro(log(a) {

quote(example.library.println(escape(a)))

})

As an alternative, the Silo compiler provides a quotecontext special form which

operates like the quote macro except it expands resolvable symbols into fully qualified

names as if they were un-quoted function calls. This make it convenient for writing

complex macros that expand into calls to many functions or recursively transform

themselves into other macros. Unlike quote, quotecontext is a special form and not

a macro because it requires cooperation from the compiler to expose the context in

which the statement was used. Another way to implement the log macro is as follows:

package(example.library)

macro(log(a) {

quotecontext(println(escape(a)))

})

One last source of confusion for macro developers is the topic of hygiene. This is

perhaps best illustrated by means of an simple example:

macro(max(a, b) {

quote(if(escape(a) > escape(b) {

escape(a)

} else {

escape(b)

}))

})

In Silo the if statement returns the last value of the branch it takes. As such, at first

pass, this code snippet seems to be correct. However, there is a subtle issue:
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a : int = 5

b : int = 4

println(max(a, b = b + 2))

Most would expect this code to print “6” when in reality it will print “8” because

the “b = b + 2” will be evaluated twice. To avoid this issue the macro should assign

both values to a temporary variable to the expression is only evaluated once:

macro(max(a, b) {

quote({

tempA = escape(a)

tempB = escape(b)

if(tempA > tempB {

tempA

} else {

tempB

})

})

})

This updated version will work correctly. Our simple driver program will correctly

print “6” but there is another issue:

tempA : int = 0

a : int = 5

b : int = 4

max(a, b = b + 2)

println(tempA)

The above code will print “5” instead of “0”. The reason for this is that the macro

squashed the local variable “tempA”. This is problematic because it is a bug that is

not visible in the user’s code and thus hard to find. To avoid this issue, Silo includes
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the “uniquesymbol” and “macrolocal” special forms which can be used to create iden-

tifiers that are guaranteed to not create naming conflicts. “uniquesymbol” will yield

a symbol that is impossible for a user program to generate by embedding an infix

operator into the symbol before a unique auto-increment counter. For example, a

possible output of uniquesymbol() is “silo.core.unique.symbol:42”. This is impossi-

ble to appear in a user program because the parser would be expand this text into a

Node expression: “:(.(.(.(silo, core), unique), symbol), 42)”. While “uniquesymbol”

produces a unique identifier, “macrolocal” produces a re-usable hygienic identifier

that can be used within a macro like a local variable; however, it is still guaranteed

to be unique across different macros and even across different invocations of the same

macro. A final, proper max macro therefore follows as such:

macro(max(a, b) {

quote({

macrolocal(a) = escape(a)

macrolocal(b) = escape(b)

if(macrolocal(a) > macrolocal(b) {

macrolocal(a)

} else {

macrolocal(b)

})

})

})

3.4.4 Use Cases for Macros

Macros are a powerful language feature that have several applications and use cases.

Many special features of existing programming languages can actually be easily imple-

mented through macros without any changes to the compiler or language specification.

For example, C# has a using statement that coordinates access to unmanaged

resources like file descriptors, hardware device contexts, fonts, etc. The using state-
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ment in C# ensures that a special Dispose method is called to ensure that the system

resources are released. In C# the using construct requires special support from the

compiler but in Silo a using statement is a simple macro:

transform(using(expression, body) {

macrolocal(a) = expression

try({

body

} finally {

if(macrolocal(a) {

dispose(checkcast(macrolocal(a), Disposable))

})

})

})

// Example usage:

using(f : File = file.open("file.txt") {

...

})

Similarly, macros can be used to create convenient constructs that help eliminate

small annoyances. For example, many managed programming languages like Java and

C# throw exceptions when certain pre-conditions are not met, for example, if a file

does not exist. While this makes it easy to track down errors at runtime it requires

developers to insert try-catch statements that can clutter their code unnecessarily. To

avoid this, an ignore macro simply re-writes user code to automatically ignore certain

exceptions. It is a way for developers to tell the compiler that certain exceptions may

be thrown but they do not care:

contents : String = null

ignore(FileNotFoundException {

f : File = file.open("file.txt")
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contents = file.readAll(f)

})

if(contents == null {

log("Empty file or file not found...")

return

})

Macros can also approximate helpful features of languages such as built-in syntax

for matrices like Matlab and named parameters like Smalltalk and Objective-C:

m : Matrix = matrix.create(int, 3 * 3 {

1 0 0

0 1 0

0 0 1

})

m = matrix.subMatrix(left=0, right=2, top=0, bottom=1)

println(m)

// Outputs:

// 1 0 0

// 0 1 0

Lastly, macros can be used for more than mere syntactic sugar and copy-and-

paste programming. Macros can extend the behavior of a compiler in many ways.

For example, a simple macro that was developed early in Silo’s implementation was

the todo macro:

macro(todo(message : String) {

throw(message)

})
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This macro simply throws an exception saying that a certain task had not been

completed yet. This is interesting because the exception will be thrown at compile

time, not at runtime. This is a handy mechanism to statically detect that certain

parts of a code base have not been written yet.

Taking this idea further, macros can implement any arbitrary logic. As a crazy

and extreme example, a macro could post a message on Reddit2 and ask users to

implement certain functionality. Once a developer responds to the post, the macro

returns the code to the compiler which can check if the code is valid or not. Example

usage could look something like the code snippet below:

func(average(a : Vector) {

askReddit("Hi Reddit, can someone write a

function that computes the average of a vector?

The name of the vector is \"a\". Thanks!"

)

})

More practically, macros can be used to detect certain bugs, check to see if a code

fragment performs side effects and optimize accordingly, check to see if functions are

documented or tested, or even ensure that certain organizational naming conventions

are obeyed.

3.4.5 Domain Specific Languages

Another major use case for macro are to support and implement hosted domain

specific languages. The distinction between a DSL and an easy-to-use API is not clear

but the moniker “DSL” is usually applied to cases that are more involved, unique,

and focused in nature. For example, writing database queries, setting security policies

in a declarative manner, or establishing HTTP routes that map URLs to executable

logic. These advanced use cases are easily expressible in Silon in a familiar manner.

2Reddit is a popular online forum that has many sub-communities dedicated to specific topics,
including programming.
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As an example, the program below is a simple HTTP Web service that queries a

school’s database and returns a list of every student for a given teacher. This example

provides a demonstration of Silon’s flexibility in ways that are far more difficult (if not

impossible) in other syntaxes and languages. Once again, these advanced constructs

are all possible using macros and require no cooperation from the compiler itself.

get("/teacher/:id/students" {

teacherId : String = map.get(params, "id")

query : Query = db.sql(

select(students.*)

from(students => s)

join(enrollment => e on d.student_id == s.id)

where(

// Notice how I can use the "teacherId" variable

e.teacher_id == escape(teacherId)

)

)

results : ResultSet = db.exec(query)

return(json.stringify(results))

})

3.4.6 Data Formats

Silon is equally useful as a simple data format for information sent over a network

as well as as an application or configuration file format. The latter is particularly

interesting as large systems comprise many configuration files for various use cases:

localization files, database configuration, test suite configuration, compiler configu-

ration, documentation of patches notes, etc. Many systems use formats like JSON,

XML, or YAML for these purposes since they are easily parsed and human readable.
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Silon is just as capable in this respect but has the added benefit of being the same

format as the application code. Not only does this preserve consistency across the

code base but it also makes it easy to move application configuration properties be-

tween hard-coded constants and configuration files. The example below shows how to

represent structured data using Silon in a manner that is similar to JSON or XML.

database(

adapter => mysql

encoding => utf8

reconnect => false

database => test

pool => 5

username => root

password => ""

socket => /tmp/mysql.sock

)

Recently, traditional data formats like XML and JSON are being co-opted as

programming interfaces. For example, MongoDB uses JSON as an alternative to

SQL [28, 2], Microsoft’s WPF framework uses an extension to XML (called XAML)

to build user interfaces [66, 77], and the Apache Ant build tool uses XML for common

scripting tasks [8]. All of these tools chose to use an existing data format because

parsers are either readily available or easily implementable in different languages,

making interoperability simple. Unfortunately, the syntax for common tasks can be

awkward as shown in the MongoDB query below:

// Instead of a more natural "quantity > 20" MongoDB requires:

db.inventory.find({"quantity": { "$gt": 20 } } )

However, Silon provides a best of both worlds. Like JSON and XML, Silon is a simple

data format that is easily parsed and representable in most modern programming

languages. However, Silon is more conducive as a programming syntax than JSON

or XML.
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3.5 Failure Cases

While Silon has certain positive properties, it is also important to realize Silon’s

limitations and potential sources of frustration.

3.5.1 Syntactic Gotchas

Since Silon is similar to C and C-like languages, developers may instinctively write

code that is valid in C but not valid Silon. This can lead to simple mistakes that are

easy to miss and hard to track down. In my experience using Silon, three concrete

examples are troublesome.

1. Return Statements. Consider the following function:

func(add(a : int, b : int => int) {

// Note: the missing parenthesis with return

return a + b

})

This code yields a compiler error. In Silo when the “return” statement appears

on its own as a symbol (rather than as a node with parentheses) the compiler

assumes that the developer is marking the end of a function and returning

nothing (i.e. null). However, in this example, since null is an object reference

and not an int the compiler raises an error.

2. Trailing Parenthesis Most common constructs in Silon have a closing paren-

thesis after the closing brace (e.g. while-loops, if-statements, functions). Often

times a developer’s “muscle memory” will take over and they will instinctively

close the parenthesis before typing the braces leading to strange compilation

errors. As an example:

// This is not valid. Note that the braces come after the parenthesis.

if(user == "bob") {
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print("Bob logged in")

}

3. Type Declarations Consider the following code snippet:

// Note: not "s : String"

String s = "Hello, World!"

Instead of using Silo’s “colon-syntax” for types, this code is using traditional

C/C++ syntax where the type name comes before the identifier. This example

is particularly nefarious because there is no compilation error at all. The com-

piler will parse String as a reference of the string class and then parse a local

variable assignment. Since the type is omitted, the Silo compiler will assume

that the s variable is an Object (i.e. the root type in the type system), which

could lead to weird runtime behavior or compilation errors that appear at a

distance from the offending line.

Developers should keep these shortcomings in mind when using Silon. Some of

them are easily mitigated while others are more tricky. For example, many modern

text editors and IDEs automatically insert the closing braces or parentheses for you,

drastically reducing the likelihood of misplacing the closing parenthesis in a Silon

expression. Moreover, linters, warnings, in addition to well worded compilation and

error messages can go a long way at helping developers identify the potential root

cause of an error.

3.5.2 Dangers of Macros

Macros are a powerful language feature and like many powerful features allow devel-

opers ample opportunities to shoot themselves in the foot.

Developing macros can be challenging. Macros in Silo are Turing complete and

thus infinite loops (and other degenerate behaviors) are possible and can be hard to

track down. For example, macro A may expand into a call to macro B (as opposed
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to calling it directly) and B expands back into a call to A leading to infinite recur-

sion. This is particularly troublesome since stack traces are completely useless in this

situation.

Not only can macros be hard to implement, they can also be hard to use. Many

bugs can be introduced because users did not use a macro in the way the macro was

intended to be used. This can lead to bugs that are far harder to track and find

because the bug is not in user code but buried in third party code. For example,

a macro developer could have been negligent and accidentally overwritten the local

variable i that the calling code was also using. This is especially troublesome with

“heavy-weight” macros that expand code multiple times.

Lastly, macro usage can be taken to extremes. Since building DSLs is simple in

Silo developers can feel the urge to make a DSL for everything. This is problematic

because it reduces the consistency between third party libraries. Every library is used

differently, exposes a radically different API, and incorporates different programming

models and usage paradigms. While presenting a custom and hand-crafted API is

well intentioned, it can also make code hard to read if every library introduces new

syntactic constructs that need to be learned and mastered independently. Developers

of third-party libraries need to resist the urge of creating exotic APIs and instead be

mindful of language-wide conventions, idioms, and syntax.

In light of these issue, the general rule of thumb is to use macros sparingly and for

specific and narrow purposes. If a particular problem can be solved using a function,

then the use of a function is preferred over a macro. If a macro is needed, the macro

should be kept as simple as possible. Functions are generally easier to understand,

use, debug, and standardize than custom syntaxes created with macros.

That said, when using macros, developers should also make use of debugging

tools provided by Silo. In particular, the macroexpand special form takes a Silo

expression and recursively expand all macros until the expressions is transformed

contains only special forms. Additionally, the macroexpandonce special form only

performs a single iteration of macro-expansion rather than fully expanding the entire

expression. Together these two special forms provide developers some tools when
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working with macros.

3.6 Comparative Evaluation

3.6.1 Other Syntaxes

To evaluate Silon’s usability, I compare code samples written in different syntaxes.

While code preference is highly subjective, developers overall are more comfortable

and familiar with C-like syntaxes, like Javascript [116]. Figure 3-7 shows the bi-

nary search algorithm implemented in Javascript, Silo, and Scheme (a Lisp dialect).

Looking at these code examples, Javascript is far similar to Silo than it is to Lisp.

In fact, the Silo and Javascript implementations are nearly identical with the ex-

ception of the placement of the closing parentheses. However, even this is likely not

problematic for most developers given the emerging popularity event-driven Javascript

code which encourages passing functions as arguments. An example from the popular

jQuery library is shown below:

jQuery("p").click(function() {

jQuery(this).hide();

}); // Note the brace inside the parenthesis

Judging from the similarities between Silo and popular existing languages (like

Javascript), it would seem that developers would be familiar with and comfortable

using Silo for development tasks.

3.6.2 Grammatical Complexity

To evaluate Silon’s simplicity (one of its design goals), I compare the number of BNF

rules needed to implement a parser for Silon to a variety of different languages and

data formats (Figure 3-8). The number of rules for every language was taken from the

language’s formal specification or from the source code of its reference implementa-

tion. As can be seen, Silon’s grammar ranks as one of the simplest along with JSON

60



// Silon

func(binarySearch(nums, target) {

helper = fn(helper, lo, hi {

if(hi < lo return(-1))

guess = (hi + lo) / 2

if(nums(guess) > target {

return(helper(lo, guess - 1))

} else(nums(guess) < check) {

return(helper(guess + 1, hi))

})

guess

})

helper(helper, 0, arraylength(nums))

})

// Javascript

function binarySearch(nums, target) {

helper = function(lo, hi) {

if(hi < lo) { return(-1) }

var guess = (hi + lo) / 2

if(nums[guess] > target) {

return helper(lo, guess - 1)

} else(nums[guess] < check) {

return helper(guess + 1, hi)

}

return guess

}

helper(0, nums.length)

}

% Scheme

(define (binary-search value vector)

(let helper ((low 0) (high (- (vector-length vector) 1)))

(if (< high low)

#f

(let ((middle (quotient (+ low high) 2)))

(cond ((> (vector-ref vector middle) value)

(helper low (- middle 1)))

((< (vector-ref vector middle) value)

(helper (+ middle 1) high))

(else middle))))))

Figure 3-7: A comparison of binary search implementations in Silon, Javascript, and
Scheme.
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Language # Rules

Silon 27

JSON 30

S-Expressions 33

XML 89

C 118

Elixir 126

Scala 134

Haskell 136

Java 176

Ruby 195

Figure 3-8: The number of rules needed to implement a parser of various languages
using BNF.

and S-Expressions. My hope is that this will help encourage its use and adoption in

many environments, especially in the design of future programming languages.

3.7 Related Work

3.7.1 S-Expressions and Lisp Dialects

Silon is most directly related to S-Expressions, a list-based notation that is famously

used in Lisp dialects [100]. S-Expressions, however, are often criticized as a program-

ming syntax because understanding the structure of a program is difficult due to the

overabundance of parentheses. Silon avoids this problem by using a different notation

and incorporating a thin layer of syntactic sugar.

The Readable S-Expression Project is an effort that attempts to improve the us-

ability of S-Expressions as a syntax for Lisp dialects [32]. Notable examples of these

improvements include “c-expressions”, which allow infix operator notations if the ex-

pressions are wrapped with curly braces, “n-expressions”, which allow the name of a
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function to be moved before the parenthesis during an invocation, and “t-expressions”,

which make parentheses optional and uses indentation to distinguish function argu-

ments. Together, these extensions to S-Expressions are called “Sweet Expressions”.

Silon and Sweet Expressions aim to address similar issues but take different ap-

proaches. Sweet Expressions are designed specifically as a compatible drop-in re-

placement for Lisp dialects whereas Silon is intended as an entirely new format and

can thus take greater syntactic liberties. As an example, common programming

expressions like System.out.println("Hello, " + user.name) and std::cout <<

"Bye!"; are not possible with Sweet Expressions but are possible with Silon.

Beyond the Readable S-Expression Project, certain Lisp dialects introduce their

own syntactic sugar for special purposes. As an example, Clojure has built-in support

for array and dictionary data types [46].

3.7.2 Other Homoiconic Programming Syntaxes

Many homoiconic programming languages have been proposed over the years. Classic

examples include TCL and certain shell interpreters like Bash [85, 95]. These lan-

guages are string-based which greatly simplifies exposing their internal structure to

developers. However, being string based, it is often difficult to infer a program’s struc-

tured representation making it hard to use for complex programming tasks. Thus,

these languages do not meet our usability design goal.

More recent languages like Julia and Elixir are also homoiconic but take a different

approach from Silon. They have grammars with special syntactic support for common

constructs conditional statements, modules, loops, and others [15, 92]. As a result,

while Julia and Elixir technically expose an AST to users, the overall syntax of the

language is less generalizable and the representation of the AST is more complex

to process. Thus, languages like Julia and Elixir do not meet our design goals for

simplicity (it is harder to parse these languages; see the Section 3.6.2) and versatility

(it is difficult for these languages to be used as a data format).
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3.7.3 Meta-Programming and Lazy Evaluation

There are ways to achieve expressivity other than homoiconicity. Languages like Ruby

and Haskell can craft extremely flexible APIs using features like anonymous functions,

late binding, runtime evaluation, invocation forwarding, and lazy evaluation [34, 47].

These meta-programming techniques were not chosen for Silon as it did not satisfy

our need for simplicity and versatility. Building a dynamic language runtime or a

lazy-evaluation programming language is a heavy-weight solution for many of Silon’s

use cases (e.g. application file formats). Additionally, Ruby-esque meta programming

relies on techniques which change the behavior and methods of objects to allow for

flexible syntaxes and embedded DSLs. While this works well for scripting tasks, this

type of meta programming is not possible in a distributed environment since it makes

liberal use of side effects and shared mutable state which is difficult to coordinate

across multiple machines. Lastly, meta-programming techniques only address some

of the benefits of homoiconicity. Other use cases like compiler extensions, static error

checkers, and linters are not possible through these meta-programming techniques.
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Chapter 4

Silo: A Service-Oriented

Programming Language

Service-oriented systems, in which application features run as independently exe-

cuting services over a network, are notoriously hard to build and manage. However,

service-oriented architectures are becoming increasingly important, especially for Web

and mobile applications, to achieve high scalability and reliability in a cost-effective

manner. This chapter introduces Silo, a new programming language that facilitates

the design, implementation, and maintenance of service-oriented systems. Using Silo,

developers are able to model a complex distributed system as a single program and

easily express many service-oriented patterns directly in the language without re-

lying on additional infrastructure, ad-hoc conventions, or intrusive and convoluted

programming styles to “glue” the system together.
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4.1 Overview

Service-oriented systems decompose application components into separate and inde-

pendent services that run together in a networked environment. This approach has

many benefits and is becoming increasingly popular in industry; however, it is also

particularly challenging (see Section 1.1).

A key contributing factor to these challenges is the design of existing languages

which are designed to only coordinate the execution of a single machine. They en-

courage designs and offer enticing features that either do not work or complicate

distributed programming. This mismatch between distributed programming and ex-

isting languages makes engineering systems challenging. For example, many languages

make heavy use of memory side effects when building applications. It is quite common

to write functions that have no return value in languages such as Java, Ruby, Python,

and C; instead, these functions are called to either change some global shared state

in the program or mutate one or more of its arguments. In both of these instances,

the program’s correctness depends on consistent and shared memory, which is not

possible to achieve across multiple machines [19]. On the other side of the language

spectrum, many functional languages like Haskel, OCaml, and Clojure sidestep this

issue by encouraging referential transparency, immutable values, and a minimization

of shared state. However, most functional languages, like their imperative counter

parts, still do not have constructs that naturally model distributed systems1 and have

to rely on low-level and platform-specific functionality like threads, processes, mes-

sage queues, and sockets which often undermine nice high-level language abstractions

and require in-depth technical skill to use effectively.

To address these challenges, I present Silo, a new service-oriented programming

language. Silo introduces a simple programming model that aligns well with dis-

tributed programming. It allows applications to be easily migrate from running on

a single machine to running across many and provides an extensible message passing

mechanism that abstracts communication in distributed environments. This chapter

1With the exception of Erlang, which we address separately.
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presents the following contributions:

• I explain the idea and importance of location transparency, in which parts of

a program are able to be moved from one machine to another without major

changes, and why it is critical for service oriented systems (Section 4.2).

• I describe Silo’s core features, idioms, and conventions and how they address

common programming tasks without sacrificing location transparency (Sec-

tion 4.3). Interestingly, Silo is an imperative language but is still able to achieve

location transparency, whereas most attempts in the past pursued a functional

approach.

• I describe Silo’s concurrency and message-passing capabilities (Section 4.4). Silo

also presents a novel idea called polymorphic delegation which allows developers

to unobtrusively extend the message-passing capabilities to work in virtually any

computing environment.

• I present a performance evaluation that demonstrates how Silo can reach the

performance of Java and outperform many other languages commonly used in

Web application development (Section 4.6).

• I identify a series of patterns that routinely appear in service-oriented systems

and describe how to express those patterns directly in Silo without relying on

external functionality (Section 4.7). The implementations of these patterns

are concise, reusable, and approach the performance of existing best-in-class

solutions.

4.2 Location Transparency

Achieving location transparency means that a program or system can continue to

operate correctly regardless of the physical location of a particular resource or software

component. Practically speaking, this means that parts of an application can be “split
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off” and run as a separate OS process or on another machine without major changes

to the source code.

4.2.1 Needs of Modern Systems

Location transparency is particularly helpful in the evolution of service-oriented sys-

tems. A key challenge when architecting such systems is determining which func-

tionality to expose as a separate service. In some cases, it may be obvious (e.g. the

mobile API); however, others are less obvious (e.g. a logging service) and others only

become clear after building an initial version of the system and deploying it to real

users. For example, it may turn out that malicious users are spamming the search

functionality and reducing the overall performance of the system for other users. In

response, the development team may want to deploy its search functionality as a sep-

arate service with more hardware resources to handle the load as well as deploying

a new monitoring service that tracks the behavior of users on the site to help iden-

tify bad citizens. Unfortunately, at this point it may be too late as these types of

changes may require fundamentally re-designing the entire system. There are plenty

of stories of organizations (big and small) struggling to keep their products up and

running in the amidst of unprecedented growth, traffic load, and new feature requests

[40, 68, 7, 13, 5].

What is ultimately needed is an agile mechanism by which developers can build an

initial version of a system quickly and progressively “mold it” as the product require-

ments change and as pain points are discovered. This is where location transparent

programming would be particularly valuable. Instead of having to build an initial

version and then start over from scratch, a new language would enable the system

to naturally evolve and adapt to new requirements, features, and unforeseen usage

patterns. Developers can make technical design decisions just-in-time rather than

attempting to be clairvoyant and predict future needs.
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4.2.2 Actor Model

Silo is built on the foundations laid by the Actor model, a theoretical model of con-

current computation that emphasizes asynchronous execution and unbounded non-

determinism [45, 4]. An actor is a fundamental unit that encapsulates processing,

storage, and communication. Informally, each actor has an address and a mailbox.

Actors communicate by placing messages in a mailbox at a certain address. In the

actor model, only the owner of a mailbox can read the messages but any actor can

place a message in any mailbox. Furthermore, message passing is the only way that

actors can communicate as there is no shared memory. In fact, the only way for an

actor to discover the address of another actor is if that address is sent as a message,

similar to a return address on an envelope.

A unique aspect of the actor model is that all communication is asynchronous

and best effort, meaning that messages can be lost, arrive out of order, and mixed

in with messages from other actors. While these lack of guarantees may makes the

actor model seem spartan (or perhaps useless) it accurately captures the realities of

distributed systems and provides a theoretical framework by which researchers can

explore approaches and mechanisms to solve practical issues. Additionally, at a prac-

tical level, virtually all communication mechanisms, from hardware protocols like SPI

to high level networking protocols like HTTP to social protocols like snail mail, can be

easy expressed by the actor model. Thus by adopting the actor model’s semantics, Silo

can provide a unified interface that properly abstracts virtually any communication

mechanism. Additionally, developers can rest easily knowing that Silo’s programming

protocols can be used in many computational environments and do not forgo relying

on platform-specific affordances like XPC on Mac OS X or Amazons Simple Queue

Service on AWS [9, 6].

Actor also serves as an excellent language abstraction for achieving location trans-

parency. Since actors execute independently from one another and because the mes-

sage passing semantics can be preserved in a distributed environment, moving an

actor from one machine to another is not a problem. Thus in a sense, an actor-based
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language forces developers to build applications in a manner that can be readily split

apart. This is especially true if the language enforces immutability and requires the

use of actors to encapsulate shared mutable state. Additionally, since actors exist

as a language-level construct, refactoring an application can be easy since it requires

no cooperation with external infrastructure like sockets, port mapping, DNS entries,

load balancers, firewall settings, etc.

4.3 Core Features

At its core, Silo is a fairly simple procedural programming language that compiles to

JVM bytecode. It should be familiar to most programmers comfortable with C-like

languages. However, Silo was designed specifically to ensure location transparency:

all language features, idioms, and programming protocols that work on a local single

machine program work in a distributed environment as well.

In a way, Silo represents a compromise between imperative and functional pro-

gramming paradigms. Functional languages are often touted for their ability to easily

parallelize (and perhaps by extension distribute) due to referential transparency, min-

imization of shared state, and immutable value types. Silo adopts many of the ideas

of functional languages but avoids becoming a functional language as many devel-

opers are more familiar with an imperative programming model. At the same time,

designing Silo requires a lot of discipline to avoid adding features from other imper-

ative programming languages that do not work in a distributed system and finding

appropriate replacement for those features. This compromise, I feel, strikes a nice bal-

ance that facilitates not only development of service-oriented system but is hopefully

inspirational to future distributed programming languages.

4.3.1 Basic Usage

Silo’s base syntax uses Silon, a homoiconic data format and programming syn-

tax discussed in Chapter 3. Despite being homoiconic, Silon should appear familiar

to users of C-like programming languages. Silo supports most common language fea-
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1. func(binarySearch(nums : Vector, target : int => int) {

2. helper : Function = fn(helper, lo, hi {

3. if(hi < lo return(-1))

4.

5. guess : int = (hi + lo) / 2

6. value : int = vector.get(nums, guess)

7.

8. if(value > target {

9. return(helper(lo, guess - 1))

10. } else(value < check) {

11. return(helper(guess + 1, hi))

12. })

13.

14. return(guess)

15. })

16. helper(helper, 0, vector.length(nums))

17. })

Figure 4-1: Binary search written in Silo with types.

1. package(linkedlist)

2. type(LinkedList {

3. head : int

4. tail : LinkedList

5. })

6.

7. func(create(values ... => LinkedList) {

8. list : LinkedList = null

9. for(i : int = vector.length(values); i >= 0; i = i - 1 {

10. value : int = vector.get(values, i)

11. list = LinkedList(value, list)

12. })

13. return(list)

14. })

15.

16. func(insert(list : LinkedList, index : int, value : int => LinkedList) {

17. if(index < 0 {

18. throw("Out of bounds")

19. } else(index == 0) {

20. return(LinkedList(value, list))

21. } else {

22. return LinkedList(

23. list.head,

24. insert(list.tail, index - 1, value)

25. )

26. })

27. })

28.

29. l = linkedlist.create(1, 3, 4) // (1, 3, 4)

30. l = l | linkedlist.insert(1, 2) // (1, 2, 3, 4)

Figure 4-2: A linked-list data structure written in Silo.

71



tures: standard primitive data types, if-statements, while loops, for loops, exceptions,

functions, anonymous functions, closures, static typing, packages, and structures.

A simple binary search program is shown in Figure 4-1 and a linked list data

structure is shown in Figure 4-2. These examples not only introduce many of the

common language constructs but also highlight some of the the naming and coding

conventions as well. There are some unique aspects to the Silo in the code examples

that are worth mentioning.

1. The binary search example makes uses of a y-combinator on line 16 in conjunc-

tion with the anonymous function. This is necessary because the anonymous

function is recursive and the variable that it is assigned to is not bound at the

time the function is defined. In many languages with closures (e.g. Javascript)

this would not be necessary because closures are mutable and as long as the

variable is bound by the time the function is called (as opposed to the time by

which the function is defined) it will work as intended. However, in Silo, closures

are immutable and thus the reference to the function must be explicitly passed

in. This step is only necessary for recursive (or mutually recursive) anonymous

functions. Function defined with the func statement are forward declared au-

tomatically and thus their identifier is statically known to the compiler and can

be used.

2. The implementation of the linked list may seem strange to many Java or C

programmers. This is because types in Silo are immutable by default. Thus the

insert function has to copy the list’s “prefix” when inserting a new element,

hence the perhaps unusual implementation.

3. The linked-list program makes use of Silo’s pipe operator on line 30. The pipe

operator takes the output of the left expression and inserts it as the first argu-

ment of the right expression. Thus, a | b() is the same as b(a). Silo is not an

object-oriented language and thus the common practice of “chaining” methods

together is not possible because there is no “receiver”. Instead, developers can

use the pipe operator to achieve similar results in a more generalizable manner.
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public class Account {

private String id;

private double balance;

public Account(String id, double balance) {

this.id = id;

this.balance = balance;

}

public transfer(Account a, int amount) {

a.withdraw(amount);

this.deposit(amount);

}

// Other methods ...

}

Figure 4-3: A simple banking application in Java. Java, like many languages, encour-
ages memory side effects and often updates method parameters “in place”.

4. The linked-list example demonstrates important Silo naming conventions re-

garding packages. Notice how the package names are used to make code more

readable in instance like linkedlist.create(...). Additionally, notice how

data types are Pascal cased (LinkedList) whereas packages and camel cased.

4.3.2 Immutability

Silo balances imperative and functional programming by encouraging and simplifying

the idiomatic use of immutable value types (like functional programming) but also

providing developers the ability to use local variables (like imperative programming).

Imperative programs encourage liberal use of side effects and mutable shared

state, which is difficult to coordinate in a distributed system and thus makes it hard

to achieve location transparency. As an example, consider a simple banking program

that allows money to be deposited and withdrawn from accounts. The most straight

forward way of modeling this program in an object-oriented language like Java is to

create an Account class with the relevant methods as shown in Figure 4-3. As can

be seen, the methods update the object “in-place”. Now imagine that we need to

change this program to run in a distributed environment and that an Account object

is sent over a network from Machine A to Machine B. Machine B performs a deposit
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on the account but now we have a problem: this change is not visible by Machine

A since both machines have disconnected memory and the entire program and API

would need to be re-architected, perhaps in a client-server model. Thus, in terms of

location transparency, the imperative programming model failed us. It encouraged us

to pursue a design that does not scale as we run on multiple machines. This challenge

is what leads many developers to advocate the use of functional programming. Unlike

imperative programming, functional programming encourages the use of value types

and little to no shared state. Thus, the problem identified above would not be possible

since the “functional” way of solving the problem would be much easier to distribute

from the start. While functional programming certainly has its benefits, abandoning

imperative programming completely seems a bit drastic.

One way of thinking about side effects is considering the visibility of the effect.

Local side effects (e.g. to local variables on the stack) is not a problem because no

one else can see it. A function can change local variables at will without impacting

location transparency. Furthermore, shared state (e.g. data on the heap) is also

not bad if that data never changes and is immutable. This is the balance that Silo

makes. All data types in Silo are immutable. Passing an argument to a function

assumes pass-by-value semantics and changes to the argument in a function are not

visible outside the function. If function wants to mutate an argument it must return

an updated “copy” of that argument. However, inside a function, the program is

free to use and mutate local variables as usual. Additionally, Silo provides syntactic

capabilities to simplify manipulating local variables in a way that retains the feel of

an imperative program as shown in Figure 4-4.

To mitigate the performance overhead of using immutable types, Silo performs

the following optimizations:

• Reference Counting Values are not copied until they are mutated. Whenever

the value is assigned to a new identifier, its reference count is incremented. If

a value that is mutated has a reference count less than 1, then it is not copied

and can be safely updated in place. Reference counting does incur a runtime

performance penalty but it does not seem to be significant in practice (see
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type(Game {

title : String

platform : String

})

a : Game = Game("Sonic", "Genesis")

b : Game = a

// Field assignment is possible ...

b.title = "Tetris"

b.platform = "TI-83"

// ... but implicitly creates a copy ...

println(a) // Game("Sonic", "Genesis")

println(b) // Game("Tetris", "TI-83")

// Data structures are also immutable

// Changes a vectors requires re-assigning it

x : Vector = vector.create(1, 2, 3)

// This prints [1, 2, 3]

vector.push(x, 4)

println(x)

// This prints [1, 2, 3, 4]

x = vector.push(x, 4)

println(x)

// Silo provides the pipe operator to make it easier to

// work with immutable types that are passed into functions

x | vector.get(1) // 2

x |= vector.push(5) // [1, 2, 3, 4, 5]

Figure 4-4: By default, all values in Silo are immutable. Silo includes syntax that
makes manipulated immutable types easier.
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Section 4.6). Nevertheless, I look forward to the inclusion of values types in

the JVM (currently planned for Java 9) which allow the Silo compiler more

opportunities for optimization [56].

• Persistent Data Structures Silo’s implementation of common data structures

like vectors and maps are persistent (see Figure 4-4). They minimize the amount

of copying and provide all essential operations in the same time complexity

as their non-persistent counterparts (e.g. access a map takes constant time)

[33, 14].

In cases where it is appropriate and necessary, Silo does provided mutable shared

state in the form of actors. Actors are discussed in the next section but essentially

encapsulate shared and mutable state in a manner that does not violate location

transparency and encourages designs that are inherently distributable. Towards this

end, it is important to emphasize that all Silo types are immutable, including closures

and fibers (discussed later, fibers are cooperatively scheduled threads). This means

that a program can pause a thread and then resume it multiple times from the

same point. Taking this even further, a system could start running a thread on one

machine, pause it, serialize it, send it over the network to another machine, and

continue executing there. This opens up exciting and interesting possibilities.

4.3.3 Polymorphism

Silo provides polymorphism in the form of a feature called “traits”, which are similar

to Java interfaces. A “trait” allows developers to describe a set of methods that need

to be implemented. Unlike Java interfaces (prior to Java 8), traits can have default

implementations of methods. An example of a trait is shown below:

package(json)

trait(Json {

stringify(this => String)

})
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A type implements a trait during its declaration as shown below:

type(Car {

make : String

model : String

year : int

} json.Json {

stringify(this => String) {

// The Map class also implements the JSON trait, so we

// are going to re-use its json stringify implementation

json.stringify(map.create(

"make", this.make

"model", this.model

"year", this.year

))

}

})

Trait methods are called just like a function; however, they are dispatched based

on the first argument to the function. Unlike traditional object-oriented programming

languages, traits explicitly require the receiver or “this” to be the first argument to

the trait method. Also, it is important to note that unlike classes in Java and C#,

traits do not form a namespace in Silo. Their methods are “mixed in” to the package

in which the trait is defined. This was done in the spirit of keeping language features

orthogonal. Silo already has support for packages so there was no need for traits to

serve the same purpose. An example is shown below:

// Example Usage:

car : Car = Car("Ford", "Model T", 1908)

println(json.stringify(car))

There are two nice properties of a trait. First, it allows Silo to achieve poly-

morphism without having to rely on heavy-weight features like objects or sub-typing.
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Second, unlike many single-inheritance and single-dispatch object-oriented languages,

traits do not pollute a value’s namespace. For example, the Person type can imple-

ment a stringify method for the Json trait as well as a stringify method for the

Xml trait without those method names clashing. Moreover, it is able to do this in a

way that avoids multiple inheritance and the diamond problem [17].

4.3.4 Macros

Silo supports and makes heavy use of macros. Unlike C/C++, macros in Silo are

hygienic and have full access to the programs syntax tree (see Chapter 3 for more

details). A simple example macro is shown below:

// A for-loop...

for(i : int = 0; i < 5; i = i + 1 {

println(i)

})

// ... is expanded into this

i : int = 0

while(i < 5 {

println(i)

i = i + 1

})

// ... which is expanded into this

i : int = 0

loop(

branch(i < 5 {

println(i)

i = i + 1

} {
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break

})

)

Macros provide an elegant approach to extensibility in a manner that does not

require mutable closures. For example, consider the following transaction method

in Ruby.

# Defining a transaction method

def transaction(&block)

begin

start_transaction()

block.call()

commit()

rescue Error => e

rollback()

end

end

# Using the method

transaction do

...

end

This transaction method is versatile, reusable, and higher-order method that ac-

cepts a Ruby block (the code marked by do ... end, which is a closure) and

invokes it in between calls to begin and commit. Thus, it ensures that user-specified

code is executed correctly while also providing an elegant syntactic representation.

Moreover, note how the block can reference and use variables within lexical scope.

Silo cannot implement this functionality with its higher-order functions because clo-

sures are immutable and changes to lexical scoped variables will not be preserved.
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However, Silo’s macros allow developers to achieve similar results without sacrificing

immutability by creating a transaction macro.

transform(transaction(body : Node) {

try({

startTransaction()

body // User-provided code is inserted here

commit()

} catch(e : Exception) {

rollback()

})

})

transaction({

...

})

4.3.5 Java Interoperability

Silo compiles to Java Virtual Machine bytecode, can run on any standard JVM and

take advantage of the JVM’s high performance JIT compiler, garbage collector, and

large ecosystem of libraries and tools. This is an approach taken by many other new

languages like Clojure, JRuby, Scala, and Groovy [46, 79, 80, 109]. Furthermore,

interoperating with Java in Silo is straight forward.

Silo is always compiled to JVM bytecode and, unlike JRuby, does not have an

intermediate “interpreter” mode. However, the Silo runtime and tool chain supports

both on-the-fly compilation (source files are compiled in memory and immediately

executed) as well as ahead-of-time (source files are compiled to JVM “class” files and

written to disk). On-the-fly compilation is better suited for scripting tasks whereas

ahead-of-time compilation is preferred for deploying large applications where the com-

pilation time is significant or for times in which developers do not wish to disclose
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the underlying source code.

While Silo’s use of Java is useful, all of the standard libraries use Silo-specific

APIs and are designed in a manner that is Java-agnostic. This means that Silo,

architecturally, could easily target platforms like LLVM, CLR, and others provided

that the compiler and runtime are ported as well. While this may seem daunting, the

reality is that most of the compiler and runtime is actually implemented in Silo itself,

which may make porting simpler. That said, this approach would limit the ability to

interoperate with other Silo libraries that depend on platform specific features; for

example, an application that uses the Java Servlet API (instead of Silo’s HTTP API)

cannot run on a version of Silo that targets the CLR.

Additionally, Java code called through Silo is not subject to the Silo’s immutability

properties. For example, instead of using Silo’s built in persistent vector, a developer

could use Java’s mutable ArrayList class instead. Using Java interoperability to

get around Silo immutability conventions is considered unidiomatic and bad form.

Developers who choose to subvert Silo’s conventions do so at their own risk, just

like users of functional languages like Haskel give up many guarantees when using a

foreign function interface.

Calling Java constructors and instantiating an object does not require a new key-

word; rather, types are “called” directly:

alias(ArrayList, java.util.ArrayList)

data : ArrayList = ArrayList()

num : java.math.BigDecimal = java.math.BigDecimal(42)

Note that the ArrayList did not need to be fully qualified like BigDecimal because

the ArrayList identifier was aliased to avoid constant repetition.

Accessing static fields and calling static methods is similarly straight forward. In

fact, the syntax is identical to Java:

// Calling a static method

num : int = Math.min(0, Math.PI)
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// Reading a static field

separator : String = java.io.File.pathSeparator

// Writing a static field

ExampleUserClass.defaultName = "Unknown User"

Calling instance methods (both virtual methods and interface methods) in Silo is

slightly different than Java and uses the # operator. This reason for this is two fold.

First, it makes it very clear which calls are instance methods and which are static

methods. Second, it discourages developers from relying on Java classes in favor of

Silo’s traits. That said, the syntax is fairly straight forward:

// Simple method call

System.out#println("Hello, World!")

// Interface method call

map : Map = HashMap()

map#put("Hello", "World")

// Method chaining

"Hello, World!"#toLowerCase()#substring(0, 5)#equals("hello")

Silo also supports Java arrays, although the syntax is somewhat awkward. De-

velopers are encouraged to use Silo builtin data structures (vectors and maps) but

arrays can be used for performance critical code and for interoperability:

// Create an empty array

fib : array(int) = arraynew(int, 5)

// Read and write an array

fib(0) = 0; fib(1) = 1
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fib(2) = fib(0) + fib(1)

// Get length of an array

for(i : int = 0; i < arraylength(fib); i = i + 1 {

println(i)

})

// Multi-Dimensional Array. A 3 x 3 int matrix

ticTacToe : array(array(String)) = arraynew(String, 3, 3)

ticTacToe(1)(1) = "x"

Creating a new Java class in Silo is done with the defineclass special form. This

special form is intended to be wrapped by macros that present a more user-friendly

interface. As a result, usage of defineclass may seem unnecessarily low level and

verbose:

defineclass(

name(Car)

field(

name(name)

type(String)

modifiers(private)

default("")

)

constructor(

inputs(name : String)

modifiers(public) {

this.name = name

}

)

method(
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name(getName)

outputs(String)

modifiers(public) {

return(this.name)

}

)

)

Silo can also be embedded into existing Java programs and called from Java. To

do so, the host Java program needs to create an instance of the silo.lang.Runtime

class. To call a function, developers call the spawn function and either pass in the

fully qualified name of a function or an instance of the Function class (which serves as

a function pointer in Silo) along with the function’s arguments. The spawn method

creates and returns an Actor object that represents the execution of the function

(actors are discussed in depth later in the paper). The output of the function can

be retrieved by invoking the await method to wait until the Actor finishes. As an

example, the following Java code calls the Silo print function:

Runtime rt = new Runtime();

// Pass a fully qualified name of the function as a String

Actor a = rt.spawn("silo.core.print", "Hello, World!");

a.await();

// Silo functions are compiled as Java classes. A class

// reference can be passed in lieu of a String. A class

// Object in Java is retrieved using the ".class" pseudo property

Actor a = rt.spawn(silo.core.print.class, "Hello, World!");

a.await();

Along these lines, note that Silo packages are identical to Java packages. Java
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packages can be imported into Silo programs just as easily as Silo packages are im-

ported into Java programs.

4.3.6 Notable Omissions

A major challenge when designing Silo was determining language features that should

not be included. Some features were avoided in the name of location transparency

but others were also avoided in the name of simplicity and to ensure the orthogonality

of the core language feature set. As the language evolves some of these features may

be incorporated, but for the time being developers should be aware certain features

are not supported:

• Object Oriented Programming Silo notably does not have a builtin notion

of classes (aside from classes used through Java). There were two reasons for

this. First, object-oriented programming is generally valuable to coordinate and

encapsulate side effects and mutable state. Since Silo minimizes mutable state

there is little benefit for actual objects. Second, in terms of building systems,

objects and actors (discussed in the next section) serve similar roles as both

represent “active” entities and have “personalities” that model different parts

of the system. Since Silo is built around the idea of an actor (for the purposes of

location transparency and distribution) it seemed superfluous to also include ob-

jects. Furthermore, it unnecessarily complicates the application design process

for developers as it forks the programming protocols of the language by forcing

developers to answer the question: “should I use an actor or an object?”

• Sub-Typing and Inheritance Silo types cannot be inherited or sub-typed.

This feature was omitted to avoid overly complex APIs with rigid type hierar-

chies that are hard to learn. Using composition and traits addresses the most

common use cases for sub typing. Developers are always able to create custom

Java classes and use Silo like they would use Java. However, this is considered

unidiomatic and bad form.
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• Generics Silo currently has no support for generics or templates. Unlike the

other omitted features, I would very much like to see Silo incorporate a more

powerful type system that employs generics. However, subjectively, I have not

seen an implementation of generics that was not overly complex or forced de-

velopers to have a deep understanding and appreciation of type systems. Im-

plementing generics, therefore, is left for a future version.

4.4 Concurrency and Communication

4.4.1 Actors and Fibers

Actor are foundational constructs in Silo that are unified throughout the language

and are used to model concurrent and distributed programming.

In many ways, actors can be thought of as a thread or an operating system process

as they represent an independent and autonomous unit of execution. To create a

new actor, a Silo program will call the spawn function and provide a reference to

some function where that actor should start executing. The spawn function will

return an Address to the new actor just like the fork Unix system call returns a pid

(process id). However, unlike Unix processes, actors provide a built-in mechanism for

communication via message passing. An actor can send a message to an Address using

the send function. The message will be sent asynchronously and the send function

will return immediately. The message will be enqueued on a mailbox belonging to

the receiving actor, who can retrieve the message at anytime using the read function.

Any Silo value can be sent as a message from integers to maps. A simple “ping-

pong” program using actors is shown in Figure 4-5. The program will simply send

the same message back and forth between two actors until one of the actors sends

a “stop” message. Notice how message passing is one-way and asynchronous — the

actors must explicitly block and wait for a reply message. This is different from the

call-and-return semantics of functions which are two way (a return value is given)

and synchronous (the calling code does not continue until the function is complete).
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func(pong {

pinger : Address = actor.read()

while(true {

m = actor.read()

if(m | instanceof(Map) {

s : Address = map.get(m, "sender")

actor.send(s, "Pong")

})

})

})

func(ping(ponger: Address, main : Address) {

repeat(10 {

actor.send(ponger, map.create(

"sender" actor.self()

"payload" "Ping"

))

actor.read()

})

actor.send(main, "Done!")

})

// Main starting point...

actor.spawn(ping

actor.spawn(pong)

actor.self()

)

actor.read()

Figure 4-5: Ping-pong program using actors.
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However, unlike threads, actors in Silo are incredibly light weight. They require

less than half a kilobyte of memory overhead (compared to threads which have many

megabytes of overhead) and do not put pressure on the operating system kernel

scheduler. Developers are free to spawn as many actors as they desire. In fact, it

is easily possible to create millions of actors on a single machine. This is because

actors in Silo are not directly backed by threads; rather, they execute on a construct

called a fiber (also known as a coroutine) [104]. Fibers, unlike threads, do not exhibit

pre-emptive multitasking. Instead, they are cooperatively scheduled and must choose

to give up the CPU before another fiber can run. Since fibers run at the language-

level, they can generally context switch faster and consume far less memory than

threads, which require large statically-allocated stacks and a trip through the kernel

to context switch. When a fiber is scheduled to execute, it will be placed in a queue

and executed by the first available system thread. Thus, it is not guaranteed that an

actor will always be executed by the same thread. In fact, it is extremely likely for

an actor to execute on multiple threads over the course of its lifetime.

The question still remains, “when do fibers yield?”. Fibers yield when a program

attempts to retrieve a message from its actor’s mailbox and the mailbox is empty.

Instead of waiting idly until a message arrives, the fiber will cooperatively yield and

allow another fiber to execute. When a message is enqueued onto an actor’s mailbox,

that actor’s fiber will be scheduled to resume. This allows a large number of threads

to execute on a small number of threads.

4.4.2 Message Passing Semantics

Silo’s actor API consists of following operations: spawn, send, read, peek, skip,

count, self, and yield. This API is quite different from may other actor imple-

mentations (for example, Erlang) and aligns well with an imperative programming

model. The execution behavior of actors is shown in Figure 4-6.

An actor encapsulates the following information:

• Address: The address of the actor. The address must be unique.

88



RunningResumeYield
Enqueued
Message

Read / Peek / Skip
(Empty Inbox)

Read / Peek / Skip
(Non-Empty Inbox)

Figure 4-6: The execution semantics of Silo’s actors.

• Mailbox: A queue of messages sent to the actor’s address. This queue is un-

bounded. This is private and can only be accessed by the owning actor. The

one obvious exception is that other actors can place messages at the end of a

mailbox owned by another actor when sending messages.

• Skipped Queue: A queue of messages that have been “skipped” by the actor.

This queue is unbounded. This is private and can only be accessed by the

owning actor.

A description of the actor API is shown in Figure 4-7 and is discussed below. With

the exception of spawn and send, the API can only be used to access and manipulate

the mailbox belonging to the current actor. In other words, an actor cannot access

the mailbox or skipped queue of another actor.

• spawn(start : Function, args : Vector => Address) will create a new

actor and return its address. The newly created actor will begin execution in

the specified function with the given arguments.

• send(address : Address, message : Object => boolean) will attempt

to deliver a message to the actor at the specified address. The message will

be placed at the end of the target actor’s mailbox. Actors can send messages

to themselves. The send function is asynchronous and returns immediately.

Programs must explicitly wait for a reply message to implement call-and-return

semantics. The boolean return value indicates if a known error took place.

However, sending a message is never guaranteed. Thus, just because send

89



! Inbox ! Skipped

Message 1

Send

! Inbox ! Skipped

Message 1

Message 2

Peek

! Inbox ! Skipped ! Inbox ! Skipped

Message 3Message 3 Message 2

Message 1Message 4

Message 2

Message 1Message 4

Message 3

Skip

! Inbox ! Skipped ! Inbox ! Skipped

Message 4Message 3 Message 2

Message 1Message 4

Message 3

Message 2

Message 1

Read

! Inbox ! Skipped ! Inbox ! Skipped

Message 1

Message 2

Message 3 Message 2

Message 1Message 4

Message 4

Message 3

Figure 4-7: A visual illustration of the actor API.
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returns true does not mean that no error took place. There are still numerous

opportunities for errors: the message may be lost during delivery, the actor may

crash before the message is delivered, the actor may be out of memory and not

be able to accept the message onto its inbox, the actor may receive the message

but crash before it is able to process it, or the actor may simply choose the

completely ignore it, etc. Developers need to design protocols that account for

this behavior, for example, incorporating timeouts. The nice thing about this

is that once established, these protocols will work locally and also remotely.

• read(void => Object) will dequeue a message from mailbox of the current

actor. If the mailbox is empty, this function will block and cause the underlying

fiber to yield control to another fiber. All skipped messages will be returned to

the mailbox in their original order.

• peek(void => Object) will access and return the next message from the mail-

box. However, the message will not be removed from the mailbox. If the mailbox

is empty this function will block and cause the underlying fiber to yield control

to another fiber.

• skip(void) will skip and return the next message from the mailbox. The

message will be removed from the mailbox and placed in the skipped queue. If

the mailbox is empty this function will block and cause the underlying fiber to

yield control to another fiber. The skip function can be used in conjunction

with the peek function to implement a “selective-receive” functionality where

an actor temporarily ignores messages until the desired message appears. This

is particularly useful for abstracting the actor API in a composable manner.

• count(void => int) will return the number of messages in the current actor’s

mailbox. This is useful for determining if another actor function will cause

execution to block.

• self(void) will return the address of the calling actor.
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• yield(void) will force the current actor to yield and give another actor a

chance to execute. An actor that calls yield will immediately be scheduled to

execute. This is useful for functions that perform long running computations

and want to be a “good citizens” and allow other actors a chance to execute.

4.4.3 Abstracting the Actor API and Selective Receive

The actor API is often too low-level for most day-to-day programming tasks. Message-

based protocols are often messy, verbose, error-prone, and hard to document. A

cleaner approach is to abstract the low-level message passing details of a protocol

inside a function.

Let us consider the implementation of the sleep function. The sleep message

protocol could not be more straight forward: an actor sends a message to the system

and the system sends back a reply message after a certain amount of time. A naive

(and wrong) implementation could look like this:

func(sleep(ms : long) {

actor.send(silo.core.system, SleepMessage(ms))

actor.read()

})

The problem with this code is that it is susceptible to false positive. What if another

message arrives before the timeout? To correct this, the sleep function should wait

for a particular message before returning:

func(sleep(ms : long) {

actor.send(silo.core.system, SleepMessage(ms))

while(true {

message : Object = actor.read()

if(instanceof(message, WakeUpMessage) {

return

})
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})

})

This is better, but there is a subtle bug. Consider the following code snippet:

actor.send(silo.core.system, SleepMessage(0))

sleep(50)

The sleep function will receive a spurious WakeUpMessage and likely not wait the full

50ms. To avoid this, the sleep protocol is enhanced with a unique identifier. Clients

send a SleepMessage with a timeout duration along with a string identifier. When

the system replies, it will include this identifier so that the client can distinguish

messages:

func(sleep(ms : long) {

// Generate a unique identifier

id : String = uuid.create()

actor.send(silo.core.system, SleepMessage(id, ms))

while(true {

message : Object = actor.read()

if(instanceof(message, WakeUpMessage) {

if(checkcast(message, WakeUpMessage).id == id {

return

})

})

})

})

This is an improvement, but there is one last issue. The sleep function currently

throws away all the messages that it ignores. This is really bad because some of

those messages may have been important and it means that the sleep function is not
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composable. To avoid this issue, Silo programs often use a technique called “selective

receive” as demonstrated in the final (working) version of sleep below:

func(sleep(ms : long) {

...

while(true {

// Take a look at the message but do not read it

message : Object = actor.peek()

if(instanceof(message, WakeUpMessage) {

if(checkcast(message, WakeUpMessage).id == id {

// We found the message we want.

// Read it so it is removed from the mailbox

actor.read()

return

})

})

// If this is not the message we want, skip it. It will be

// placed back on the mailbox when we finally do "read" a message

actor.skip()

})

})

This sleep function is now correct, composable, and safe to use just like any other

function. The ability to skip messages means that messages can be multiplexed over

a single mailbox and that a single actor can concurrently communicate with multiple

entities.

Since selective receiving is so common, Silo includes the await macro that makes

selective receive more aesthetically pleasing. The await macro allows developers to

specify which messages they are interested in using pattern matching. Messages that

do not match are implicitly skipped. Example usage of await is shown below.
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func(sleep(ms : long) {

id : String = uuid.create()

actor.send(silo.core.system, SleepMessage(id, ms))

actor.await(

WakeUpMessage(escape(id)) {

return

}

)

})

The await macro allows developers to quickly match incoming messages easily. In

the above example, the program is waiting for a message of type WakeUpMessage in

which the first field is the same as the local variable, id. In many ways, this pattern

matching is similar to product types found in many other functional programming

languages. However, the pattern matching in Silo cannot implement all logic and

sometimes developer will have to fall back to lower-level primitives. Nevertheless, for

most use cases, the await macro greatly simplifies application source code.

4.4.4 Programming with Actors

Actors in Silo are the only way to model shared mutable state and the only way

to share state between actors is by passing messages (recall that all values in Silo are

immutable). For example, a “registry” actor is shown in Figure 4-8. This actor creates

a local hash map and then enters into a loop where it processes incoming messages.

Others actors can get access to this hash map by sending certain messages to the

registry. Notice how the registry actor models a server. It encapsulates a resource

(the hash map) and listens for requests to access that resource. However, the program

does not need to worry about low level concepts like sockets, ports, and networking

protocols. Also, notice how the registry requires messages to contain a return address

to the actor that sent the message. The sending actor can access its address by
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// Message Types

type(GetRequest {

clientToken : String

sender : Address

key : String

})

type(PutRequest {

clientToken : String

sender : Address

key : String

value : Object

})

type(Resp {

clientToken : String

value : Object

})

// Actor Service Body

func(registry {

data : Map = map.create()

while(true {

actor.await(message

GetRequest {

r : Resp = Resp(message.clientToken, map.get(data, message.key))

actor.send(message.sender, r)

} PutRequest {

data = map.put(data, message.key, message.value)

r : Resp = Resp(message.clientToken, message.value)

actor.send(message.sender, r)

} else {

// Ignore

}

)

})

})

// Client Library Function

func(getValue(registry : Address, key : String => Object) {

token : String = uuid.create()

actor.send(registry, GetRequest(token, actor.self(), key))

actor.await(response

// We only want to match the token. We don't care about the value

Resp(escape(token), _) {

return(response.value)

}

)

})

Figure 4-8: Modeling shared mutable state in Silo.
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calling actor.self. Without the sender’s address, the registry would not know to

which address the reply should be sent. Programming with actors forces developers to

think about how their program would operating in a distributed environment. More

advanced examples of actor use cases are shown in Section 4.7.

Beyond mutable state, it is also important to realize that all side effects must be

coordinated through actors. This includes I/O and system calls as well. For example,

to read a file, an actor will send a request to a special “system” actor who will read

the file from disk and send a reply message to the calling actor with the file contents.

Another example is the sleep function. To wait for a certain amount of time, an

actor will send a message to the same “system” actor and ask it to send it a message

after a certain amount of time has passed. The actor will then block and wait until

that message arrives.

Lastly, actors are not only useful for modeling logical services. They can also

be used as a general construct for concurrency. For example, downloading a list of

images can be easily done in parallel using actors.

func(downloadAll(urls : Vector) {

uniqueid : String = uuid.create()

address : Address = actor.self()

foreach(url in urls {

actor.spawn(fn({

content : String = http.download(url)

actor.send(address, map.create(

"id" uniqueid

"content" content

))

}))

})

// Wait for all messages to be downloaded

repeat(vector.length(urls) {

actor.await(Map("id" escape(uniqueid)))
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})

// Continue

...

})

4.4.5 Concurrency Models

Silo supports a variety of different concurrency models: hybrid-preemptive (actors),

preemptive (pinning), and cooperative (fibers).

An issue with the default concurrency behavior (hybrid-preemptive) of actors

is that fairness is not guaranteed and a new actor is given a chance to run only

when another actor blocks on the actor API. As such, an actor performing a long-

running computation (for example, matrix manipulation or calling a Java method)

could accidentally (or maliciously) starve others.

To avoid this, Silo supports “thread pinning”. Normally actors are multiplexed

across a small number of shared threads. With thread pinning an actor is given its

own dedicate thread that will be preemptively scheduled by the operating system.

This will ensure that long running operations do not block the system from making

progress and also give an actor a higher priority to execute.

Silo also allows fibers to be used on their own. Fibers are first class citizens in

Silo and an actor could create a fiber and run it. The fiber will continue to execute

until it yields or returns. A running fiber can even use the actor API to access the

mailbox of the enclosing actor. If the running fiber blocks, it will block the entire

actor. Thus, fibers can be used to model concurrent execution flows within a single

actor. Moreover, since fibers are first class values, they are also immutable. This

means that they can be resumed multiple times from the same starting point and

also can be serialized and saved to disk to be resumed later. An example of using

fibers is shown below.

// Creating a fiber from an anonymous function
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adder : Fiber = fiber.create(fn(a : int

while(true {

// yield is a two-way street. It will yield a value to the

// calling code but also allow the calling code to pass in

// a new value

increment : int = fiber.yield(a)

a = a + increment

})

))

// Fibers are immutable. This code prints 5

fiber.resume(adder, 5)

fiber.resume(adder, 5)

println(adder.value)

// This code prints 10

adder = fiber.resume(adder, 5)

adder = fiber.resume(adder, 5)

println(adder.value)

// This code is more succinct

adder |= fiber.resume(5)

adder |= fiber.resume(5)

println(adder.value)

4.4.6 Polymorphic Delegation

An important promise of Silo’s actor implementation is that it enables applications

to achieve location transparency. While it is true that an actor-based system can

architecturally be split across multiple machines, there are other practical consider-

ations that are also important. Notably, how are messages sent remotely? Do they
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use a custom TCP protocol or a higher-level protocol like HTTP? These decisions

are best left to developers since each system has its own unique requirements and use

cases. This is especially true with the trend toward cloud hosting environments where

development teams may choose to leverage proprietary messaging solutions that are

scalable and cost effective [51, 6].

Instead of forcing developers to use a particular technology for remote message

passing, Silo includes a feature called polymorphic delegation that allows user-level

code to customize how messages are passed. As mentioned before, each actor is

identified by an Address value. However, the Address type in Silo is not concrete

data type; rather, it is a polymorphic type. The Address trait shown below.

trait(Address {

method(actualAddress(this, currentPayload) => LocalAddress)

method(actualPayload(this, currentPayload) => Object)

})

When actor.send is called it will invoke actualAddress and actualPayload on the

polymorphic Address value. This allows user-defined code to “route” the message’s

“actual payload” through a delegate actor (living at the “actual address”) that will

send the message to its final destination. The call to actualPayload is useful for

wrapping the actual message with other useful information that the delegate may

need, for example the desired recipient. The delegate actor is free to perform any

arbitrary computation to deliver the message to the intended destination. It can

even choose to ignore the message as a form of congestion control.

Figure 4-9 illustrates how delegation can be used to send a message to an actor

running on a remote system. In this figure, the message is sent to an RPC actor

which talks to another RPC actor running on another machine. The exact transport

mechanism is up to the RPC service — it can use TCP, HTTP, Amazon’s SQS,

Apple’s XPC, or even carrier pigeons.

Note that the actualAddress method must return a value of type LocalAddress.

A LocalAddress is a concrete type that implements the Address trait and is used
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Figure 4-9: Polymorphic delegation allows user code to customize how messages are
delivered. The top example does nothing and simply allows the message to be sent
to another local actor. The bottom example routes the message through an RPC
service to an actor running on another machine.

to reference an actor running in the current local process. It is a built into the Silo

runtime and is what is returned by “normal” calls to spawn. Calling actualAddress

or actualPayload on a LocalAddress will simply yield the same value.

An example program that demonstrates polymorphic delegation for remote mes-

sage passing is shown below:

// The cluster package is a built-in remote message passing library.

// It uses a custom TCP protocol built. Developers are free to create

// their own alternatives.

c = cluster.join(map.create(

"port" env("port")

"certificate" ...

"known-hosts" ...

))

// Spawns a key-value registry actor on the machine running at "127.0.0.1:8002"
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// "a" is actually an instance of ClusterAddress which will route message

// through the cluster ("c") for delivery.

r : Address = cluster.spawn(c, ":8002", registry.start)

// The registry client library can still be used unchanged even through the

// registry is running on a different machine. The same messaging protocol can

// be used as the client library's implementation is location agnostic.

registry.set(r, "hello", "world")

println(registry.get(r, "hello"))

The example above also communicates the importance of a core convention in

Silo: library code should avoid calling spawn. For example, suppose the registry

library provided a function called registry.spawn which uses silo.core.spawn to

create a new registry actor and returns its Address. The reason why this is bad is it

prevents the developer from specifying where that actor should run. Instead of using

silo.core.spawn the developer may have wanted to use cluster.spawn instead.

Thus, the library made a decision that should have been left to the developer. The

convention in Silo is to create a function called “start” which is where newly created

actors should begin. It is up to the developer to determine how this function should

be called. If the library does need to call spawn internally (for example, perhaps it

needs to return a more complex value rather than just an Address) it should provide

some mechanism by which developers can customize which “spawn” is called. A good

way of doing this is to accept a function as an argument or use a macro of some sort.

An example is shown below:

// Tells the registry library to spawn a new registry

// using the default spawn function

registry.spawn(silo.core.spawn)

// Tells the registry library to spawn a new registry

// using the cluster API by passing in an anonymous function
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Figure 4-10: The Silo compilation pipeline.

registry.spawn(fn(a : Function, b : Vector => Address {

cluster.spawn(c, ":8002", a, b)

}))

Lastly, polymorphic delegation is useful for more than just remote message passing

and can be used in many scenarios:

1. Test cases where messages are artificially delayed or intentionally dropped

2. Implementing transparent encryption of messages

3. Client-side load balancing

4. Congestion control

5. Logging and debugging

4.5 Implementation

4.5.1 Compilation Pipeline

Silo compiles to JVM bytecode. An overview of Silo’s compilation pipeline is show

in Figure 4-10. Of note, Silo’s compiler performs a “macro-expansion” step where

it invokes user-specified macros to transform syntax into a lower-level representation

before the core compiler processes it. The lowest-level constructs in Silo are called
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Figure 4-11: The list of special forms in Silo.

“special forms”. Special forms provide access to all functionality that is not possible

by other means (functions, other macros, etc.). The number of special forms in Silo

is quite limited and shown in Figure 4-11. Most of Silo’s implementation is written in

Silo itself as macros or as bootstrapped runtime APIs. This is an important property

since it keeps the core compiler small, simple, and easy to manage. Moreover, porting

the compiler to another platform (for example, Microsoft’s CLR, LLVM, or x86) only

requires re-implementing a handful of special forms.

A major challenge for Silo’s compiler is implementing fibers, which, as aforemen-

tioned, are used as an alternative to threads by Silo’s actor implementation. Imple-

menting fibers on the JVM is particularly tricky since the JVM does not provide any

mechanism for pausing and resuming execution (aside from threads). The technical

details of fibers are outside the scope of this chapter and are discussed in-depth in

Chapter 5.

4.5.2 Runtime Architecture

An overview of Silo’s runtime architecture is shown in Figure 4-12. This runtime

architecture is provided by the silo.lang.Runtime class. Silo’s runtime uses two
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Figure 4-12: Silo’s runtime architecture.

thread pools: one for executing actors and the other for executing background tasks.

The actor thread pool uses a work-stealing scheduler [82, 16] and results in huge

performance improvements for actor-based programs compared to standard thread

pools (see Section 5.5). The background thread pool, however, is a standard thread

pool that is used (1) to pin an actor to a thread to ensure that it is not swapped

out by the runtime when waiting for a message to arrive or (2) to execute long run-

ning computations that would block the actor thread-pool. Notably, the background

thread pool is also leveraged to run a standard java.util.Timer object which is

used to implement the Silo sleep function (since call Thread.sleep would block the

work-stealing thread pool).

4.5.3 Other Features

Traits

A trait in Silo is compiled to Java interface as well as an abstract class that implements

that interface. The abstract class allows for default implementations of certain trait

methods. Furthermore, the method names in the interface are mangled to ensure that

no naming conflicts occur. For example, the stringify method on the Json trait is

internally renamed to silo$trait$Json$stringy.
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Immutable Data Types

Silo data types are compiled as a Java class with private fields. They extend the

ReferenceCounted class to gain access to the release and retain methods along

with an internal counter. Whenever a value is assigned to a new variable, the retain

method is invoked. Additionally, whenever a value is passed into a function, it is

retained before the function call and then released after the call. At the end of

a function, all local variables are released; Silo currently does not perform liveness

analysis to minimize the number of variables that are released at the end of the

function.

Accessing a field (e.g. user.name) is compiled to a “getter” method. Mutating a

field (e.g. user.name = "Bob") is compiled to a “setter” method. This setter method

checks the reference count. If the count is one, the setter method updates the field and

then returns the same object (i.e. returns this). If the count is not one, the setter

clones this, sets the field, and returns the new value. Values are clones using Java’s

Object.clone method. This method is a JIT-intrinsic which means that the JVM

will use platform-specific capabilities to improve the performance of the copying, for

example, by using x86’s SSE vectorization instructions. In short, Object.clone is

quite fast.

Nested mutations use a special “getter” method called “access-for-mutation”. For

example, user.friend.name = "Bob" is compiled to:

user = user.accessForMutation friend().mutate name("Bob"). Access-for-mutation

will check the internal reference count, perform a shallow copy as necessary, and up-

date its reference counter to zero. The reason why the reference count is set to zero

(instead of one) is that the reference count will be incremented the moment the value

is assigned back to a variable (i.e. the “user = ...” in the previous example code).

This allows the compiler to mutate nested structures without having to deeply copy

the entire hierarchy.
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Benchmark (ms) Java (v1.8) Silo (v0.1) JS (V8 v3.8.9) JRuby (v1.7.10) Ruby (v2.0) Erlang (R16B03)

Mandelbrot 23,811 20,354 34,627 125,322 323,141 155,860

Fibonacci 4,238 4,097 16,363 23,416 182,756 43,649

Parse Int 7,712 9,809 12,831 24,768 66,053 12,430

Binary Tree 2,283 3,312 30,104 65,674 357,731 2,557

Vector 12,059 18,944 21,994 17,854 39,484 246,245

Immutable Vector 16,101 1,658 18,159 19,430 67,307 246,245

Dictionary 5,756 6,213 16,378 26,831 121,788 23,756

Immutable Dictionary 48,362 1,144 562,171 92,309 916,200 23,756

Total 120,322 65,531 712,627 395,604 2,074,460 754,498

Total (no immutable) 55,859 62,729 132,297 283,865 1,090,953 484,497

Figure 4-13: Silo’s performance compared to Java, Javascript, JRuby, and Ruby.

Persistent Collections

The reference implementation of Silo uses Clojure’s implementation of persistent data

structures. Clojure is a Lisp-dialect that compiles to JVM bytecode [46].

4.6 Performance Evaluation

To evaluate Silo’s performance, I conduct a fairly standard set of benchmarks that

stress different computational tasks: execution performance, memory allocation, re-

cursion, etc. I compare Silo’s performance to Java, Javascript, Ruby, JRuby, and

Erlang. Java was chosen to illustrate an upper bound of the type of performance that

Silo could hope to achieve (recall that Silo compiles to JVM bytecode). Javascript,

Ruby, and JRuby were chosen as they are mature languages that have recently un-

dergone signifiant performance optimizations and are popular choices in the Web

application domain. JRuby was included to provide a reference of the type of perfor-

mance possible with another JVM-based language. Lastly, Erlang was chosen as it

is perhaps the most famous actor-based programming language. A description of the

benchmarks is shown below.

• Mandelbrot Generate a Mandelbrot set. This benchmark stresses basic math

performance and nested loops.
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• Fibonacci Compute progressively larger fibonacci numbers. Dynamic program-

ming must not be used (i.e. no memoizing results) and recursive implementa-

tions must be used (i.e. no iterative algorithms). This stresses the performance

of recursion.

• Parse Int Parse a string representation of an integer value. This benchmarks

stresses basic string processing and is also a common task in practice.

• Binary Tree Allocate and then deallocate progressively larger binary trees.

This benchmark stresses memory allocation, management, and garbage collec-

tion.

• Vector Push a large number of strings on a vector and then pop them all off.

This benchmark stresses the performance of the standard vector implementation

in the language. The standard vector container must be used (i.e. no special

hand-rolled implementations). This also includes an immutable version of the

test where the implementation must make “copies” of the vector.

• Dictionary Assign a large number of key in a dictionary data structure and

then remove them. This benchmark stresses the performance of the standard

dictionary implementation in the language. The standard dictionary container

must be used (i.e. no special hand-rolled implementations). This also includes

an immutable version of the test where the implementation must make “copies”

of the dictionary.

The raw results are shown in Figure 4-13. The exact numbers are of perhaps little

interest but there are some interesting observations that can be made.

• Silo reaches the performance of Java and achieves much greater performance

than the other contenders. This is particularly notable because Silo provides a

rich set of abstractions (actors, coroutines) that are not directly supported by

the JVM and could easily negatively impact performance. Nevertheless, Silo’s

reference implementation is able to achieve good performance thanks to several
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compilation optimizations and runtime techniques. Chapter 5 provides more

technical details on these optimizations.

• The binary tree, vector, and map benchmarks demonstrate that an imperative

language can enforce immutability without sacrificing performance. While the

Silo’s emphasis on immutability causes it to achieve less performance than Java,

the difference is not as drastic as one might think. Silo’s reference-counting

optimizations and use of persistent data structures seem to perform well and,

in particular, are able to far outstrip languages like Ruby and Javascript, both of

which use highly optimized mutable hash map implementation written in hand-

rolled C. It also bear repeating that in specific instances where performance is

critical, Silo developers can always fall back onto mutable data structures in

tight loops. Developer must do so, however, at their own risk.

• JRuby’s performance is quite different from Silo and illustrates an important

point: just because a language compiles to JVM bytecode does not means that

it is automatically fast. Language design choices, compiler optimizations, and

idioms make a huge difference. Silo’s semantics, design, and implementation

appear to align well with the capabilities of the JVM.

• Erlang’s performance on these CPU-benchmarks also lags behind Silo and Java.

This does not come as a surprise since Erlang was designed for message pass-

ing and programming telephone switches rather than raw CPU performance.

Nevertheless, CPU performance is still important for many applications, espe-

cially large service-oriented systems. A comparison between Erlang and Silo for

message-passing and I/O performance, which is just as important for service-

oriented systems, is shown in Section 5.5.
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4.7 Common Patterns

4.7.1 Basic Networking (HTTP, TCP)

At the core of any service-oriented system is networking. Silo’s common library

consists of high performance support for many protocols including HTTP, TCP, UDP,

SMTP, and others. Moreover, Silo’s networking stack is integrated into its actor

implementation which allows for high-performance non-blocking networking using

simple blocking APIs.

Silo’s high performance networking is a combination of (1) its scalable actor im-

plementation as well as (2) its ability to access high quality and optimized Java

libraries. For example, Silo’s HTTP library makes heavy use of Java’s nio package

which includes zero-copy buffers between the kernel and user space.

An example of an HTTP server is shown in the code below.

1. import(silo.net.http)

2.

3. func(handler(r : connection.Request, c : connection.Connection) {

4. m : connection.HttpContentMessage = connection.readAll(c)

5. connection.writeAll(c, 200, null, "Hello, World!")

6. })

7.

8. func(simpleServer() {

9. println("Silo - Running on port 8000")

10.

11. options : Map = map.create()

12. options = map.set(options, "port", Integer(8000))

13.

14. s : server.Server = server.build(handler, options)

15. server.start(s)

16.

17. // Block forever

18. while(true {

19. actor.read()

20. })
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21. })

22.

23. simpleServer()

4.7.2 Fan-Out and Fan-In

A common task in many servers is to make many requests to back-end services in

parallel and wait for them to come back. This is called “fan-out” and “fan-in”. The

example below is a simple actor service that waits for user account requests and fetches

all the information in parallel. This example demonstrates a powerful abstraction in

Silo called Futures. A Future is a construct that allows an actor to spawn another

actor to execute code in parallel and provides an API to wait for the return value

to be returned back. It is a re-usable construct that allows message-passing code to

appear like “call-and-return” code.

1. type(AccountInfoRequest {

2. id : String

3. sender : Address

4. })

5.

6. type(AccountInfoResponse {

7. id : String

8. info : Map

9. image : String

10. friends : Vector

11. })

12.

13. func(start() {

14. // The server will loop forever and wait for message

15.

16. loop({

17. actor.await(message

18. AccountInfoRequest(_) {

19. // Fetch the user's account information. Set a 200ms QoS timeout

20. info : Future = future.spawn(user.getBasicInfo(message.id), 200)
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21.

22. // Fetch the user's profile picture. Set a 200ms QoS timeout

23. image : Future = future.spawn(assets.getProfilePictureUrl(message.id), 200)

24.

25. // Fetch the user's friends. Set a 200ms QoS timeout

26. friends : Future = future.spawn(social.getFriends(message.id), 200)

27.

28. // Wait for the futures to be satisfied

29. info |= future.wait()

30. image |= future.wait()

31. friends |= future.wait()

32.

33. actor.send(message.sender, AccountInfoResponse(

34. message.id

35. info.value

36. image.value

37. friends.value

38. ))

39. } else {

40. // Ignore message

41. }

42. )

43. })

44. })

Keep in mind that it is possible for users to create more powerful constructs on

top of Future; for example, a doInParallel(...) macro. However, in this example,

I avoid doing this to demonstrate the Future API.

Another example of fan-out is when an actor send the same message to many

instances of the same back-end service and returns the result from the quickest service.

If the services are running on different machines, this avoids having to wait for a

strangling machine before returning a result. The code is shown below:

1. // The variables "a", "b", and "c" are back-end services.

2. // This function will return the response from the quickest service.

3. func(startService(a : Address, b : Address, c : Address) {
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4. actor.await(request

5. SomeRequest {

6. aa : Future = future.spawn(actor.send(a, r))

7. bb : Future = future.spawn(actor.send(b, r))

8. cc : Future = future.spawn(actor.send(c, r))

9.

10. // future.await will return the first

11. // future that is satisfied

12. output : Future = future.await(aa, bb, cc)

13.

14. // Create a response from the first response

15. response : SomeResponse = buildResponse(output.value)

16. actor.send(request.sender, response)

17. } else {

18. // This "else" block is really important, even if it is empty

19. // This actor will recieve many messages from the "late"

20. // services that would otherwise fill up the current

21. // actor's mailbox. This else block throws those messages

22. // away and clean up the mailbox.

23. }

24. )

25. })

4.7.3 Client-Server

A common pattern shown in many examples is an actor that runs in an infinite

loop and waits for certain messages to appear. Moreover, most of the examples

provide helper functions that send and receive messages so client code does need to

be concerned with low-level message passing.

This pattern is so common that Silo ships with a macro that provides an easier

to use API. All developers need to do is specify a set of functions and the macro will

automatically create message definitions for each of those functions, define an actor

that dispatches those messages to the correct function, and emit client-side functions

that handle the low level message passing. An example is shown below.
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1. server.create(

2. name(math)

3.

4. options(

5. timeout(200)

6. defaultSpawn(silo.core.spawn)

7. )

8.

9. actions(

10. add(a : int, b : int => int) {

11. return(a + b)

12. }

13.

14. subtract(a : int, b : int => int) {

15. return(a - b)

16. }

17.

18. // Etc...

19. )

20. )

21.

22. // The server.create macro creates a "Service" type automatically.

23. // It also create a "start" function which spawns the services.

24. // The start function accepts an optional argument that allows

25. // the user to specify which "spawn" function to use. The default

26. // is to use "silo.core.spawn".

27. s : math.Service = math.start()

28.

29. // It also exposes client functions.

30. println(math.add(s, 5 , 5))

31.

32. // Prints 0

33. println(math.sub(s, 5 , 5))
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4.7.4 Load Balancing

Distributing load across actors is often needed in practice as a single instance of a

service cannot handle the load. Often times this requires special external infrastruc-

ture from a third party that runs along side application code. However, users can

naturally represent load balancing directly in Silo without any external dependencies.

A simple reusable example is shown below:

1. // Note how the function allows the developer to specify which "spawn"

2. // function to use. Thus, staying true to the convention that library

3. // code shoud never call spawn.

4. func(loadBalance(f : Function, spawner : Function, replication : int) {

5. servers : Vector = vector.create()

6.

7. repeat(replication {

8. servers = vector.push(servers, spawner(f))

9. })

10.

11. while(true {

12. message = actor.read()

13. i : int = Math.random() * replication + 1

14. a : String = vector.get(servers, i) | checkcast(String)

15.

16. actor.send(a, message)

17. })

18. })

19.

20. // Spawn 5 instances of "someservice" using the standard "silo.core.spawn"

21. a : Address = spawn(loadBalance(someservice.start, silo.core.spawn, 5))

22.

23. // Can interact with back-end actors transparently through the loadbalancer

24. actor.send(a, "FooBar")
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4.7.5 Monitoring and Fault Tolerance

A major challenge with distributed programming is handling errors. Programs can

crash, hardware failures can occur, and the network may become partitioned. In many

programming languages, if an error or unhandled exception takes place, the program

simply crashes and the operating system shuts down the process. In service-oriented

systems, this approach is not practical as the system needs to keep on running — just

relying on exceptions is not a sufficient form of error handling.

Silo provides monitoring and error handling capabilities in the form of “super-

visors”. Each actor can call a special function called spawnSupervisor to create a

supervisor. A supervisor is just like any other actor, however, the Silo runtime will

send the supervisor a message when its corresponding actor either finishes (returns

cleanly) or crashes (an unhandled exception propagates). This allows the supervisor

to perform any background maintenance tasks (for example, sending a recurring heart

beat message to let other actors know that it is still alive) or cleanup tasks (sending

a “dead signal” to ignore others of the crash).

An actor can create as many supervisors as it desires. However, the link between

an actor and its supervisors is not bi-directional. If a supervisor crashes, the actor

will not be notified. Furthermore, if a supervisor crashes, it will not be resumed

automatically. Thus, it is important to keep the logic of a supervisor as simple as

possible. However, the supervisor is guaranteed to be in the operating system process

as its corresponding actor and is guaranteed to receive the “exit” message from the

runtime. Keep in mind, however, that it is still possible, and in fact common, for

both the supervisor and the actor to crash at the same time (e.g. a power failure)

and protocols should be designed according (i.e. perhaps a protocol should not rely

on a “did finish” message since it may never arrive and rely on timeouts with a

“heart beat” signal instead). Lastly, it is worth knowing that a supervisor to create

supervisors of its own. However, in practice, it is perhaps better to keep supervisors

as simply as possible and create “supervisor trees” at the application level.

The program below is a simple demonstration of supervisors. The application
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consists of a simple “ping-pong” actor, which we have seen previously, and a registry

actor, which acts as a “DNS service” that allows actors to lookup the “physical”

address of another actor using a descriptive name. The program make uses of a su-

pervisor that automatically restarts the ping-pong service in the event that it crashes.

1. func(pingPongSupervisor {

2. actor.await(message

3. silo.core.ExitMessage {

4. // Restart the the ping-pong service

5. spawn(startPingPong)

6.

7. // Close the supervisor, a new one will be created

8. return()

9. } else {

10. // Ignore

11. }

12. )

13. })

14.

15. func(startPingPong {

16. // Create the pingpong service

17. spawnSuperVisor(pingPongSupervisor)

18.

19. // Register the ping-pong actor with the registry

20. registry.set("ping-pong", actor.self())

21.

22. // Start running pingpong service

23. pingpong.start()

24. })

4.8 Related Work

Programming Languages

Perhaps the most spiritually similar language to Silo is Erlang [11]. Many core aspects

of Silo’s design were heavily inspired by Erlang, including the design of the actor

117



implementation. A key difference is that Erlang is a functional languages and compiles

to BEAM bytecode while Silo is imperative and compiles to JVM bytecode. Moreover,

Erlang does not have Silo’s polymorphic delegation capability and running Erlang

code on multiple machines requires using a “distributed Erlang system” which is hard

to customize and deploy in modern cloud-based hosting environment. Additionally,

Silo’s imperative actor API is different from Erlang’s which is tightly coupled with

other functional programming features like pattern matching, product types, and

guards.

Functional programming languages like Haskell, Racket, and OCaml are often

touted for the ease at which compiler can parallelize code, which is analogous to

Silo’s location transparency [47, 93, 53]. Unlike these languages, Silo provides an

imperative model which is more familiar to most developers [116].

Many distributed programming languages have been introduced. Early languages

and systems like Argus and CLU attempted to coordinate consistent memory across

multiple machines [64, 65]. Silo does not attempt to guarantee consistent or co-

ordinated memory abstraction and rather focuses on providing a message passing

API. Languages like Salsa and Axum are other interesting examples of more recent

distributed programming languages [122, 72]. However, they take quite different ap-

proaches to Silo by featuring different message passing semantics, not encouraging

immutability when create sequential programs, and lacking Silo’s polymorphic dele-

gation capabilities.

Silo joins a large number of existing languages that compile to JVM bytecode

including Scala, Clojure, JRuby, Groovy, Kotlin, and Ceylon [80, 46, 79, 109, 55, 97].

However, unlike many of these languages, Silo does not attempt to be a “better Java”

and provides a drastically different programming model that is location transparent.

Clojure’s emphasis on immutability and use of persistent data structures was

inspirational to Silo. In fact, the reference implementation of Silo uses Clojure’s im-

plementation of persistent data structures. However, Clojure does not provide actors

or lightweight concurrency constructs like Silo. Instead, Clojure requires develop-

ers to write code in continuation passing style for high-concurrency and use software
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transactional memory (STM) for coordinating shared mutable state [103, 99]. STM is

a powerful tool however it is hard to guarantee transactional memory in a distributed

environment. That said, future work for could explore implementing Clojure-style

STM on top of Silo’s actor implementation in a manner than works in a distributed

environment.

Rust and Go are both modern imperative programming languages that were de-

signed for concurrency [36, 90]. Like Silo, both language include lightweight con-

structs for concurrency that are multiplexed across a small number of OS threads.

However, these languages focus on multi-core programming rather than distributed

programming. As a result, they still encourage shared state and their message pass-

ing semantics offer guarantees that are hard to provide in a networked environment.

That said, I continue to be pleased with Rust’s design and while it does allow shared

mutable state it encourages developers to use immutable values by default.

Languages like Ur/Web, Orc, and Links also address similar issues as Silo as they

aim to facilitate building Web applications [20, 60, 26]. Silo takes a more barebones

approach and focuses on tools for building scalable reliable backend services that can

be consumed from any client-side application or framework. Ur, Orc, and Links, on

the other hand, offer a “full-stack” development experience where the front-end and

back-end are both described in the same program.

Lastly, languages like Ruby, Python, and Javascript (Node.js) are commonly used

in practice to implement service-oriented systems [34, 121, 57]. The dynamic nature

of these languages make them ideal for building many small services that communi-

cate with one another. However, as scripting languages, they often require external

infrastructure to implement complex systems. As an example, implementing a load

balancer in Ruby is not practical. Instead, multiple Ruby processes are run behind

a special-purpose load balancer (like HAProxy) and monitored by operating system

utilities in case a process crashes.
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Frameworks and Software Applications

Many frameworks have been proposed that solve similar problems to Silo that de-

serve mention. Thrift is a cross language RPC library that allows RPC stubs to

be generated between many languages [105]. Similarly, ZeroMQ is an efficient RPC

library that allows messages to be sent between different nodes in a network [50].

Netty, Node, and LibAsync are event-driven networking libraries that allow program

to achieve greater scalability, performance, and throughput than standard blocking

APIs [113, 57, 30]. Akka is a famous actor framework that includes a remote message

passing capability [120]. Additionally, message queues like RabbitMQ and ActiveMQ

run as separate processes that broker messages sent between different programs allow

systems to be designed in a loosely coupled manner [91, 112].

Most of these frameworks are heavy weight and programs using them typically

need to be architected around the frameworks’ conventions and idioms. That said,

in most cases, they offer complimentary functionality to Silo and this paper does

not intend to argue that one is better than the other. Silo’s polymorphic delegation

mechanism allows these existing frameworks to be “dropped in” without changing

the rest of the Silo program. For example, Silo ships with a default distributed

messaging capability based on Netty and TCP. However, if a developer wants to use

their organization’s existing deployment of RabbitMQ, they can do so by using a

RabbitMQ adapter. As implementations of networking libraries improve, so can Silo.
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Chapter 5

Implementing Coroutines in Silo

Languages that compile to Java Virtual Machine (JVM) bytecode rarely support

coroutines because they are hard to implement efficiently given the constraints of the

JVM. This is problematic for building scalable I/O-bound concurrent systems, like

Web services, in which coroutines provide an elegant balance between the intuitiveness

of blocking code, where a separate thread processes each request, and performance

of event-driven code, where an event loop dispatches I/O events as they occur to

callback functions. This chapter introduces compilation techniques for implementing

high performance coroutines as a first class citizen in Silo, a JVM-based language for

building service-oriented systems. Silo’s coroutines require no changes to the JVM,

are suitable to enable by default in new programming languages, and match or beat

the performance of languages specifically designed to support coroutines.
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5.1 Overview

Coroutines are functions that can be suspended and resumed at pre-defined locations.

They are powerful primitives and have been used to implement many high level

programming constructs like iterators, infinite lists, and exceptions. Recently, there

has been renewed interest in coroutines for implementing cooperatively scheduled

tasks, commonly referred to as “fibers”. Fibers can be thought of as “lightweight

threads” and are particularly useful for implementing high concurrency servers.

Unlike many programming languages, Java does not support coroutines. More-

over, the Java Virtual Machine enforces constraints to memory usage and control

flow that make it impossible to use existing techniques for implementing coroutines

[63, 37, 22, 75, 42, 117]. This is unfortunate for two reasons (1) Java is perhaps the

most widely used language for implementing Web services and (2) many languages

are now compiling to JVM bytecode to gain access to a high performance VM and a

rich ecosystem of libraries and tools.

I present a suite of compilation techniques for supporting coroutines on the JVM

that is suitable for use in new languages that compile to JVM bytecode. I implement

these techniques in Silo, an actor-based programming language that uses coroutines

to back the execution of a large number of concurrent actors onto a fixed number of

operating system threads. In this chapter, I make the follow contributions:

• I describe a method for representing coroutines in JVM bytecode. The interest-

ing properties of the method are that it works on any JVM without modification,

is high performance, does not incur runtime penalty for function invocations

that do not suspend, and does not generate unduly large methods.

• I present an empirical evaluation of Silo against other programming languages,

Web servers, as well as other approaches for implementing JVM coroutines.

Silo’s coroutine implementation matches or exceeds languages with dedicated

support for coroutines in micro-benchmarks. Furthermore, Silo is able to hand-

ily outperform Web servers written in popular languages for “Web development”

and matches the performance of the Nginx Web server [114].
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5.2 Background

5.2.1 Scalable I/O Architectures

Coroutines have received recent interest for facilitating the implementation of the

scalable Web architectures [90, 11, 36]. Handling concurrency efficiently is of utmost

importance for Web services since they need to handle a large number of requests

that can arrive at the same time. There are two main approaches for implementing

these types of servers in practice.

• Forking Many servers create multiple threads to handle requests simultane-

ously. When a message is received, the server will create a new thread (or fork

a new process) to handle the request and then return to waiting in a loop for

the next message. This type of server is often called a “forking server”, making

reference to the fork Unix system call. One problem with this approach is that

many network requests are short lived (e.g. sending a small image) and the

time spent creating a new thread is often more than the time spent processing

the request. To address this, many forking servers will create and maintain a

pool of thread (or processes) upfront instead of creating and destroying a new

thread for every request [69]. This is called a “pre-forking server”. Furthermore,

to prevent threads from sitting around doing nothing, some pre-forking servers

will create sophisticated thread pools that automatically destroy threads that

are idle for a long time or dynamically add more threads as needed [69, 113].

Technical minutia aside, the most important aspect of multithreaded servers is

that they rely on the operating system kernel’s scheduler to handle concurrency.

Web servers like Apache’s httpd and Microsoft’s IIS are examples of pre-forking

servers [111, 71].

• Asynchronous Event Loops Instead of using a separate thread to process

each request, some servers use a single thread running in an event loop instead.

Event loop servers tell the operating system to notify them when certain events

take place, for example, a new connection being created or new data arriving
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over an existing connection. However, special care must be taken to not perform

long running operations when processing an event since it will block the entire

event-loop and drastically reduce performance. Luckily, most servers do not

perform long running computations; rather, they spend most of their time doing

I/O operations (e.g. talking to a database, reading a file from disk, writing data

to the network, etc). Many of these tasks can also be implemented in an event-

driven manner and merged into the server’s event loop. For example, instead of

querying a database and waiting for the results, the server can send the query to

the database over a TCP connection and then tell the operating system to notify

the server when new data arrives from the TCP connection (i.e. the results have

been returned). In the mean time, the server will return to the event-loop and

can be processing other events that have taken place, for example, perhaps a new

client connected and wants to download a particular HTML file. This style of

development is called “non-blocking” or “asynchronous” since the server never

blocks on an operation and always returns to the event loop as soon as possible.

By processing requests in a piecemeal and overlapping manner the server is able

to handle many requests with just a single thread. As an enhancement, many

event loop servers run multiple event loops (each on their own thread) to take

advantage of multicore processors. Web servers like Nginx, Lighttpd, as well as

the Node.js HTTP server are examples of event-driven servers [114, 54, 57].

Event loop servers can be far more scalable than forking servers [86, 126, 1, 31, 98].

Each event loop thread can handle many client connections whereas forking servers

can only handle a single connection per thread. Moreover, since most requests are

I/O bound, forking servers end up creating a lot of threads that literally do nothing

and simply wait for I/O operations to complete. These idle threads take up valuable

system memory (for example, every Java thread is allocated with a 1MB stack by

default), puts pressure on the kernel’s scheduler (especially in cases when multiple

threads “wake up” at the same time), and reduces overall system performance.

On the other hand, forking servers are far easier to implement and maintain. To

implement event loop servers, developers need to manually manage the concurrent
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// Non-Blocking / Event-Driven

myDatabase.startTransaction().success(function() {

function abort() {

myDatabase.abortTransaction()

}

function process(urls) {

var url = urls[0]

myWebService.get("SOME_URL").success(function(data) {

myDatabase.insert(data).success(function() {

if(urls.length == 1) {

myDatabase.commitTransaction()

... continue ...

} else {

process(urls.slice(1))

}

}).error(function(error) {

abort()

})

}).error(error) {

abort()

}

}

process(urls)

}).error(function(error) {

console.log(error)

})

// Blocking Code

myDatabase.startTransaction()

try {

for(url : urls) {

data = myWebService.get("SOME_URL")

myDatabase.insert(data)

}

myDatabase.commitTransaction()

} catch(error) {

myDatabase.abortTransaction()

}

Figure 5-1: Blocking vs non-blocking code in Javascript. Blocking code is often much
more intuitive and easier to understand.
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control flow for every request. In practice, this means that straight forward applica-

tion logic needs written in continuation passing style and broken up across callback

functions leading to “callback hell” in which code is hard to understand and main-

tain [3, 74]. This is particularly problematic for application servers (as opposed to

static standalone HTTP file servers) since application code is likely to change more

frequently. Figure 5-1 shows an example of easy to understand blocking code (used

with a forking server) compared to non-blocking code (used with an asynchronous

server).

Coroutines provide an elegant balance between ease of use and performance.

Coroutines are functions that can pause and resume at predefined locations. Since

they are a language-level construct and do not require support from the operating

system kernel, coroutines can pause and resume much faster than threads. Further-

more, they are often implemented with stacks that dynamically grow and thus not

only consume far less memory than threads but are generally faster to create as well.

However, the true beauty of coroutines is that they have a stack that provide auto-

matic stack management [3]. This means that developers can write code “normally”

instead of in a continuation passing style.

The only caveat is that coroutines are not preemptive scheduled by the kernel;

rather, they must be scheduled manually by the application itself. However, for

servers this is hardly an issue as a natural “context-switching point” readily exists:

I/O operations. A server could wrap all major I/O functions such that they initiate

the I/O in a non-blocking manner and then pause the current coroutine and return to

some sort of an event loop. When the event loops gets notified that the I/O operation

has completed, it will find and resume corresponding coroutine. Until that time, the

event-loop can resume other coroutines that are waiting to execute. In this way,

developers get the best of both worlds. A single operating system thread can now

handle many clients and application code is written in a straight-forward blocking

manner.
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5.2.2 Continuations

Coroutines are closely related to the concept of a “continuation”, which is a descrip-

tor of how and where a computation should “continue from” in order to complete.

Conceptually, a continuation should include a location to resume execution (e.g. a

function pointer or the address to an instruction) and any relevant data that is needed

by the computation. Most of the time, continuations are created manually by the de-

veloper and then passed between between functions to be resumed at a future point in

time. This style of programming is called “continuation passing style”. The problem

with continuation passing style is that it is a manual process. In fact, it is often called

“manual stack management” because it forces developers to save information that a

stack trace would naturally contain [3]. Language features like closures are somewhat

helpful since they eliminate certain types of book-keeping but still require code to

be structured in a somewhat awkward way since you cannot return in continuation

passing style.

Coroutines offer an alternative to continuation passing style that offers “automatic

stack management”. There are many ways to implement coroutines, but one of the

more efficient approaches allocates a large chunk of memory on the heap, which serves

as a makeshift stack. To resume a coroutine, the processor’s stack frame register

is pointed to this heap-allocated stack and the program counter is set to the next

instruction after where the coroutine paused execution. To pause, the state of the

processor’s registers are saved to the same heap-allocated stack (i.e. a continuation)

and the processor’s stack frame register and program counter are reset. This approach

is fast (pauses and resumes in constant time) and does not require a trip through the

kernel (which can serve as a bottleneck). Unfortunately, coroutines are not supported

on the JVM.

5.2.3 Java Virtual Machine

The Java Virtual Machine (JVM) is a virtual machine that runs inside of a process

and executes JVM bytecode. Java programs are first compiled to JVM bytecode
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Figure 5-2: The JVM is a stack-based virtual machine. It operates by pushing
operands onto a stack, popping them off, and pushing the results.

which, in turn, is executed by the JVM. As Java has grown, the JVM has gotten

progressively more refined, performant, secure and stable and is one of the most

advanced virtual machines in existence today [63]. As a consequence, many new

programming languages elect to compile to JVM bytecode instead of native machine

code to gain access to the JVM’s highly optimized just-in-time (JIT) compiler (which

compiles bytecode to machine code on the fly), high performance garbage collector,

as well as interoperability with a huge ecosystem of libraries and frameworks.

The JVM is a stack-based virtual machine. The stack itself is divided into two

parts: the operand stack and local variables, as shown in Figure 5-2. All JVM

instructions work by popping operands from the operand stack and pushing back

results. This includes local variables — to use a local variable, the variable must first

be copied to the operand stack. Figure 5-2 shows an example of how the JVM adds

two numbers. The JVM instruction set is somewhat large and contains support for

basic arithmetic (addition, subtraction, etc.), simple control flow (conditional branch

statements, and goto statements), storing and reading local variables, manipulating

composite data types (arrays and objects), invoking methods, and others. While the

JVM offers many high-level language features like virtual dispatch, exceptions, and

monitors, the JVM spec does not have any support for coroutines. Moreover, many

common techniques for implementing coroutines are not possible either of because of

enforced requirements set by JVM or practical implementation details:

1. Control statements can only jump to instructions within the same method.
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The only way to jump to a far off location is to throw an exception or to

use an invoke instruction, which will transfer control to another method after

allocating a new stack frame to hold the target method’s local variables and

operands. This means that is not possible to trick the JVM into using a heap-

allocated stack and must always use the stack of a JVM thread.

2. A method can only access locations in the stack that are part of its frame

and cannot access the stack of the calling method. Moreover, the only way to

manipulate the stack trace is to call another method (which will add a frame to

the trace) or return from a method (which will remove a frame from the trace).

This means that it is not possible to “mimic” a heap allocated stack trace in

a utility function that dynamically saves the state of the thread’s stack and

remove all the frames from the stack trace.

3. The JVM sets a maximum size of a single method to 64KB. This means that it is

not possible to compile entire applications as a single method and co-opt control

statements to implement functions. Furthermore, the JVM’s high performance

JIT compiler will not attempt to compile methods that are greater than 8KB.

Thus, this approach is likely not performant [123].

4. A cornerstone feature of many JVMs (including the Oracle’s HotSpot JVM

and OpenJDK) is its tracing JIT compiler. The JIT works by identify code

paths are that commonly executed and then translating them to native code.

In the process, the JIT can perform many optimizations based on runtime

profiling information like biasing against uncommon branch statements and

inlining methods. A common approach for implementing coroutines is using a

“trampoline” in which the caller of a method returns control to a trampoline

that calls the method on the caller’s behalf. When the callee finish, it also

returns to the trampoline which calls the caller again, but this time with the

return value [37]. This approach is useful for implementing coroutines because

the trampoline can record a stack trace as the program executes. However, this

approach yields terrible performance because of the high overhead (calling a
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method is now four times as expensive) and it prevents the JVM’s JIT from

inlining method calls [18].

This discussion is not meant to be critical of the JVM. In fact, each of these

restrictions is done for good measure — its makes the JVM much more secure, able

to apply aggressive JIT optimizations, and far easier to parallelize. However, they do

represent challenges that need to be overcome when implementing coroutines.

5.3 Continuation Passing Transform

To implement coroutines in Silo, the Silo compiler performs a continuation passing

transform on all Silo code. The engineering details of this transformation cannot be

taken lightly since all Silo code is internally converted to continuation passing style

to ensure that any function can be paused and resumed. In short, this means that

non-pausing code should not incur a significant runtime performance penalty.

The Silo compiler transforms every Silo function such that the stack can “unwind”

and then “rewind”. The intuition of this transformation is shown in Figure 5-3.

Each function is passed a hidden parameter of type ExecutionContext. This

parameter is pass-by-reference and contains a boolean field that indicates if the cur-

rent execution is yielding. Whenever a function calls another function, it passes the

context variable as an argument. When the callee function returns, the caller checks

to see if the ExecutionContext is in a yielding state. If it is not, it allows execution

to continue as normal. If it is, the caller will pack the local variables and operand

stack into a data structure called an ExecutionFrame, record the index of the call site

where execution yielded into the ExecutionFrame, save the ExecutionFrame to the

ExecutionContext, and return a dummy value. This same behavior will be performed

on every function in the stack trace until the entire stack is unwound. To ensure that

ExecutionFrames are inserted into the correct location into the ExecutionContext’s

“frames” array, all call sites are wrapped with beginCall and endCall which incre-

ments and decrements an internal stack pointer field.
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// Original Code

public void foo(int a) {

int b = bar(a);

int c = baz(b);

}

// Transformed Pseudo Code

public void foo(ExecutionContext ctx, int a) {

// Hoist and initialize variables.

int b = 0; int c = 0;

// Jump to the point where execution paused.

// Program counter is -1 initially.

switch(ctx.programCounter) {

case 0: goto RESTORE_SITE_0;

case 1: goto RESTORE_SITE_1;

}

goto CALL_SITE_0;

RESTORE_SITE_0:

<restore-operand-stack>

CALL_SITE_0:

ctx.beginCall();

b = bar(ctx, a);

switch(ctx.endCall() {

case RESUMING:

<restore-local-variables>;

goto END_CALL_SITE_0;

case CAPTURING:

<store-operand-stack>;

<store-local-variables>;

ctx.setProgramCounter(0);

return;

case YIELDING:

return;

case RUNNING:

// Fall through

})

END_CALL_SITE_0:

// Similar code for "int c = baz(b)"

...

}

Figure 5-3: The Silo compiler transforms code so that the execution stack can “un-
wind” and then be “rewound”.
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To resume execution, the stack trace is artificially re-created. At the start of each

Silo function, the compiler inserts a jump table that inspects the current ExecutionFrame’s

call site index. If the index is “-1” that means that the function is being called for

the first time and never yielded. Otherwise, it will jump to the call site that caused

execution to yield. The function will then push dummy values onto the stack (to

appease the JVM, see Section 5.2.3) and then call the function again. This continues

all the way “down” until the stack trace has been re-created. Note, however, that no

stack information has actually been restored. This happens after the callee function

returns. The caller inspects the ExecutionContext (just like with a normal call) and

if the context is yielding again (perhaps a function “downstream” resumed by yielded

again) it simply returns a dummy value. In this case there is no need to save the

local variables or operand stack because this information is already saved. However,

if the context is not yielding, the function will check to see if a ExecutionFrame is

present and restore the contents of the local variables and stack accordingly. Thus,

in this way, functions delay restoring their stacks until absolutely necessary.

This approach has many benefits.

1. It preserves the JVM’s call stack which is helpful for debugging (many con-

tinuation passing transforms lose all stack information making debugging hard

[102]), allows functions to return after resuming, and does not get in the way

of the JVM’s JIT optimizations (unlike trampolining transformations, which

does).

2. There is minimal overhead for functions that do not yield. This can be seen by

Silo’s performance results in Section 4.6 where Silo is able to achieve comparable

performance with Java despite the fact that it is written in continuation passing

style. In fact, the only real overhead Silo incurs is checking the the “yielding”

field on the ExecutionContext which is a single branch instruction. Moreover,

most of the time a call site will either always yield or never yield and the

JIT compiler optimizes this type of code using runtime profiling and branch

prediction [12].
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public class ExecutionFrame {

public int programCounter = -1;

public Object[] locals;

public Object[] stack;

}

Figure 5-4: Silo needs to store local variables as well as the operand stack when
program execution is pausing. One way to do that is to create a stack frame which
holds values in dynamically sized arrays.

public class Frame_58b1e3ea_IDLJL extends ExecutionFrame {

public int stack_0;

public double stack_1;

public Object stack_2;

public long local_1;

public Object local_2;

}

Figure 5-5: Silo reifies custom stack frame objects that have fields corresponding to
state of the operand stack and local variables at the call site where execution yields.
An example is object is shown here and corresponds to a call site where the stack
contains an int, a double, and an Object and there are two local variables, one long
and one Object.

3. Resuming execution is also fast. The jump table inserted at the top of each

function jumps to the call site in constant time (i.e. it is not a linear-time

switch statement) and, again, is a single instruction that can be optimized by

the JVM since call sites that yield are likely to yield again.

4. This approach avoids using exceptions for non-local returns. Since we need to

“unwind” the stack to a fixed point, an idea that comes to mind is to throw

a special exception that propagates up the stack. This approach avoids using

exceptions since they can be up to 20 times slower than normal returns [73].

5.4 Optimizations

5.4.1 Custom Stack Frames
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A technical detail that was glossed over in the previous sections was how the

operand stack and local variables are saved. A potential solution is shown in Figure 5-

4 in which Object arrays are used. The Object class is the root class in the Java

language and can store any Java value and thus Object arrays appear to be a good

general-purpose container for storing arbitrary data.

However, there are three major performance drawbacks to using object arrays.

First, when restoring the stack, all values need to be type casted since the original

type information is lost when using an Object array. Second, primitive types not

only need to be casted, but also boxed and unboxed since Java primitive types (int,

double, etc.) cannot be directly assigned to an Object. Third, array accesses in the

JVM are subject to bound checks for security reasons and these bound checks impact

performance [63, 94].

To get around these issues, Silo creates a custom ExecutionFrame for every call

site. Instead of using an array, this custom object has separate fields for each operand

and local variable. This eliminates the need to box primitives and the use of arrays.

An example of a custom ExecutionFrame is show in Figure 5-5.

An obvious concern is that creating a custom class for every call site will result in

a bunch of otherwise unnecessary classes. To avoid this, the Silo compiler will re-use

ExecutionFrames between call sites as possible. For example, calls to foo(int, int)

and bar(int, int) are likely eligible to share the same ExecutionFrame since the

contents of the operand stack (i.e. two ints) are the same. There are some edge

cases (for example, sum(0, foo(1, 1)) is different from just foo(1,1)) but this

drastically reduces the number of ExecutionFrames as the number of unique call sites

is actually quite small in practice [106].

5.4.2 Minimizing Method Size

A major drawback to Silo’s continuation passing transformation is that it inserts a

large number of instructions for each call site. Under most circumstances, there is

a staggering 60-to-1 ratio from a “normal” call and a transformed call. Moreover,

this ratio can grow without bound depending on the level of nested function calls
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Figure 5-6: Silo attempts to reduce the code size of each call site. The figure on the
left is the original call site and the right is the call site after code reduction. The
reduced code size is a constant number of instructions (in blue) per call site with the
exception of the operand stack, which grows depending on usage (shown in red).
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and number of local variables. This is problematic for three reasons. (1) The JVM

enforces a maximum method size of 64KB. (2) Most JVM implementations will disable

the JIT compiler on methods that are greater than 8KB, which has a huge impact

on performance [63, 123]. (3) During JIT compilation, one of the most powerful

optimizations the JVM can do is inline method calls; however, on most common

architecture, the JVM will only inline methods that are less than 325 bytes [78].

To demonstrate the performance impact, I ran a simple experiment that artificially

inflated the size of a Silo function by inserting dummy instructions that would never

get executed at runtime. The function that could be inlined finished in 1046ms, the

function that could be JITed but not inlined finished in 6128ms, and the function

that could not be JITed at all finished in 149218ms.

In addition to the severe performance impact, the code size problem is also quite

common in practice. The 60-to-1 ratio means that Silo functions, effectively, need to

be kept under 130 bytes in size to enable JITing and under just 5 bytes to enable

inlining. To put this in perspective, if we take the Java standard library and apply

the 60-to-1 ratio, 5% of all methods would be ineligible for JITing and 73% would

be ineligible for inlining. Currently 0% of methods are ineligible for JITing and only

0.12% of methods are ineligible for inlining.

To avoid this issue, Silo reduces the size of a transformed method in several ways

and can get the ratio down to approximately 10-to-1, a significant improvement. With

this new ratio, all methods in the Java standard library are eligible for JITing and

only 28% are ineligible for inlining. An illustration of the final transformation with

all of the following improvements is shown in Figure 5-6. These improvements are

discussed below.

• The instructions for saving and restoring local variables are abstracted and the

execution flow of the program will jump to a certain label to save (or restore)

the local variables and then jump back. Thus the cost of saving local variables

is amortized across all call sites in the function. Unfortunately, there is no way

to jump and return in the JVM. The jsr instruction would allow this behavior

but is all but deprecated and most JVM implementations will disable the JIT
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for methods that use jsr since the bytecode is hard to optimize quickly. To

get around this, Silo’s compiler will insert instructions to jump to the “local

subroutine” and then, instead of “returning”, the execution flow will jump to

the start of the method and re-use the jump table to get back to the correct

location. Thus, by simply jumping two times, the compiler can emulate the jsr

instruction.

• The custom ExecutionFrames are compiled with a helper static method that

accepts all of the operands and saves them to the appropriate fields. Thus,

instead of emitting instructions to save each operand individually, the Silo com-

piler can insert a static method call which will save the operand stack in a single

instruction.

• The instructions for pushing dummy values onto the operand stack are elimi-

nated by splitting the call site into two call sites: one for normal execution and

the other for resuming. Moreover, the call site for resuming is moved into a

separate helper utility method so the Silo compiler does not need to insert in-

structions for pushing dummy parameter values. The reason for pushing dummy

values in the first place was to appease the JVM verifier. The JVM requires that

the operand stack is always consistent at any given instruction offset regardless

of control flow. For example, the following JVM pseudo-bytecode is not valid

because depending on the value of c, the operand stack at the print call is

different — in one instance the operand stack will have a single string operand

and in the other the stack will have a single integer operand:

boolean c = ...;

if(c) {

<push_string "Hello">

} else {

<push_int 1>

}

print()
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To avoid this, the Silo compiler pushes dummy values on the stack before re-

suming to ensure that the operand stack is consistent after the call returns.

However, by splitting the call site into two parts, this is no longer necessary.

Lastly, Silo allows developers to annotate functions as non-yielding to prevent

the compiler from transforming call sites. This drastically reduces code size as it

eliminates the overhead of the continuation passing transformation. In this case the

size of Silo functions is comparable to the size of Java method generated by javac.

5.4.3 Hybrid Trampolining

Resuming a long stack trace can be expensive since each function along the trace must

be called. To avoid this, Silo loads ExecutionFrames on-demand. It starts by resuming

only the top-most ExecutionFrame by calling the relevant method dynamically. When

this function returns, the Silo runtime checks to see if the ExecutionContext is yielding

or running. If it is yielding, then the runtime does not do anything further and can

execute another coroutines instead. However, if the function is not yielding, the

runtime will then load and invoke the next ExecutionFrame so that execution can

continue.

This approach may seem similar to the “trampoline” discussed earlier in Sec-

tion 5.2.3. As previously mentioned, trampolining is far from ideal because jumping

back and forth is a lot of overhead. To minimize this impact, Silo’s runtime uses an

exponential back-off technique to load progressively more frames each time execu-

tion returns to the trampoline while the ExecutionContext is not yielding. In other

words, the runtime will first resume 1 frame, then 2, then 4, then 8, and so on. This

approach is called “hybrid trampolining” and allows Silo to resume deep stack traces

more efficiently.
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Table 1

Thread-
Create

Fibonacci Thread Ring Ping-Pong Tree-
Traversal

Erlang 6514 28984 735 3481 4036

Akka 32866 3617 2955 3121 10675

Silo 19492 4091 2364 3604 11286

Silo (No Ops) 19007 4551 3701 5152 17773

Exceptions 19645 4864 3955 9113 27356

Threads 0 10320 16209 11833 21517

Table 1-1

Erlang Akka Silo Silo (No Ops) Coroutine Threads

Thread-
Create

6514 32866 19492 19007 19645 0

Fibonacci 28984 3617 4091 4551 4864 10320

Thread Ring 735 2955 2364 3701 3955 16209

Ping-Pong 3481 3121 3604 5152 9113 11833

Tree-
Traversal

4036 10675 11286 17773 27356 21517
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Erlang Akka Silo Silo (No Ops) Coroutine Threads

Thread-
Create

39176 905632 112032 119572 618188 138548300

Fibonacci 23120 207348 122052 109292 452652 138524760
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Ping-Pong 22784 203416 124748 108676 235020 514968
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Table 1

Thread-
Create

Fibonacci Thread Ring Ping-Pong Tree-
Traversal

Erlang 6514 28984 735 3481 4036

Akka 32866 3617 2955 3121 10675

Silo 19492 4091 2364 3604 11286

Silo (No Ops) 19007 4551 3701 5152 17773

Exceptions 19645 4864 3955 9113 27356

Threads 0 10320 16209 11833 21517
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Figure 5-7: Silo’s performance (top) and memory consumption (bottom) on message
passing tasks compared to Akka, Erlang, Java (Threads), and the Java coroutine
library. Note the Thread was unable to complete the “thread-create” benchmark.
Also, note the the memory consumption is log scale.
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Table 2

Silo Akka Erlang

Thread Creation 297 1039 447

Fibonacci 551 2785 586

Thread Ring 842 2645 924

Ping-Pong 777 3070 754

Tree Traversal 1588 3804 1207
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Table 3

Silo Silo (No Op) Akka Erlang

Thread Creation 23.828 25 31.391 7.565

Fibonacci 2.491 7.564 3.661 33.417

Thread Ring 2.126 4.115 3.582 0.749

Ping-Pong 2.73 8.035 3.164 3.622

Tree Traversal 12.135 18.184 12.415 4.785

M
illi

se
co

nd
s

0

8.75

17.5

26.25

35

Thread Creation Fibonacci Thread Ring Ping-Pong Tree Traversal

Silo Silo (No Op) Akka Erlang
Figure 5-8: A comparison of the code size of various concurrent benchmark programs
written in Silo, Akka (Java) and Erlang.

5.5 Evaluation

To evaluate the performance of Silo’s coroutines I compare it against Erlang, the

gold standard in concurrent programming, and Akka, arguably the most popular

and highest performance actor framework written for the JVM, and actual threads.

Additionally, I benchmark Silo with and without the optimizations described in this

section to see if they make a difference in practice. Lastly, I include an existing

JVM coroutine library that uses exceptions to unwind the stack to compare Silo’s

approach to existing JVM-based solutions. The benchmarks perform a variety of

message passing tasks that stress different runtime behaviors.

1. Thread Creation Measures how long it takes to create and spawn a large

number of actors. This test measures how fast it takes to “spin up” an actor.

2. Fibonacci Implements an “infinite” list of fibonacci numbers. Whenever the

fibonacci actor receives a message, it replies with the next fibonacci number.

This test measures runtime performance when two actors are sending messages

back and forth between one another.
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3. Thread Ring A “ring” of actors is created in which each actor passes a message

to the next actor and I measure how long it takes to send a message around the

ring. This test measures runtime performance when many actors are sending

messages but always to the same actor.

4. Randomized Ping Pong A single actor randomly picks an actor from a pool

and sends it a “ping” message and waits for a “pong” message in reply. This

repeats a large number of times. This test measures performance when a system

has a “one-to-many” broadcast configuration.

5. Tree Traversal One actor stores a tree-like database and exposes an API

that allows clients to query for the children of a particular node. The client

recursively traverses this tree in a depth-first manner until all nodes are reached.

This test measures the performance when an actor has a deep stack because of

recursion.

The runtime performance of these experiments along with the code size of the

implementations are show in Figure 5-7. The code size is determined by taking

the source code and compressing it with only the “level one” compression of gzip

(Figure 5-8). Level one compression is the least compression that gzip will perform

and is useful to simply strip whitespace and consolidate large redundant phrases (e.g.

Java import statements). Looking at the results, there are a couple of interesting

observations.

1. Silo is able to beat Erlang and Akka in certain tests. This is impressive because

Erlang has special support for actors and concurrent programming, unlike the

JVM which provides no support. Nevertheless, Silo performs well. Addition-

ally, Akka is a Java framework that requires code to be written with manual

continuation passing style. Despite this, Silo’s automatic continuation pass-

ing transformation is still able to out perform manual hand-rolled continuation

passing style of the Akka code in certain circumstances. This is likely because

the Silo compiler is able to make transformations that developers would nor-
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mally want to avoid because it requires too much effort or is unmaintainable in

the long run.

2. Threads perform, by far, the worst. This finding corroborates the intuition

that threads are too heavy-weight for massively concurrent systems. Threads

are slower to context switch in virtually all tests because their context switches

must be coordinate by the OS kernel, thus creating a concurrent bottleneck.

Moreover, threads consume orders of magnitude more memory that all other

implementations. For Web services, the memory consumption is likely to be

more concerning. Slow context switching is bad but its degrades performance

gracefully. However, once enough memory is allocated, performance will sharply

drop: the system will start paging and struggle to perform routine tasks. As an

example, the threaded implementation was unable to finish the Thread Creation

benchmark on the benchmarking system. It was simply unable to create the

necessary number of threads and the process was forcefully shutdown by the

OS and runtime.

3. Erlang’s performance is impressive and it certainly has earned its reputation

as the gold standard for concurrent programming. However, it is important

to realize that these benchmarks stress the performance of context switching

between different tasks. Real applications will involve actual computations as

well. The fibonacci benchmark highlights this issue. While Erlang is able to

context-switch fast (as seen by other benchmarks), the moment it needs to

perform computational tasks (even a task as simple as fibonacci) it quickly

lags behind Java’s high performance JIT compiler. This can also be seen when

looking at the performance results in Figure 4-13. Thus, just because Erlang

is able to pass messages quickly does not mean it is suitable for all aspects of

system development.

4. Silo’s optimizations make a major difference on the benchmarks. In many cases

the optimizations move Silo from last place into first place. The tree traversal

is particularly interesting and highlights the importance of Silo’s hybrid tram-
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polining. Unfortunately, on the tree traversal benchmark Silo is unable to reach

the performance of Erlang. This is most likely because Erlang has support for

tail-call eliminations which the JVM does not provide. In some cases, how-

ever, the optimizations cause Silo’s performance to degrade. This is seen in the

Thread-Create benchmark. The reason for this is that the custom stack frames

force the JVM verifier to check for the exists of more classes at runtime than

before.

5. The exception-based Java coroutine library exhibits fairly low performance.

This should not be surprising and it confirms our concern that exceptions may

be too slow for use. Nevertheless, the coroutine library is still able to outperform

threads, which was its main goal to begin with. Additionally, while its runtime

performance was not stellar, its memory consumption is far better than threads.

6. The memory consumption graphs show that Java uses far more memory than

Erlang. This should not be cause of too much concern. Java is known to be

a memory-hungry language that trades off high memory consumption for fast

execution performance. Java tends to allocate large chucks of memory and waits

until most memory is consumed until the garbage collector kicks in. In short,

high memory usage is common for Java and is not much of a concern in practice.

7. When looking at the code size, Silo is comparable to Erlang and much more

concise than the Akka code. This is the result of two factors. First, Java as

a language tends to be a bit more verbose (although, the fact that the code

is run through gzip mitigates this). Second, Akka requires code to be written

in continuation passing style manually, Silo’s compiler is able to perform this

transformation automatically. Moreover, it would appear that Silo’s automatic

transformation is just as efficient, if not more. Thus Silo makes it both easier

and more efficient to write code.

Lastly, to evaluate Silo’s performance in real-world applications, I compare an

HTTP server implemented in Silo to other languages. Silo performs well and the

results are shown in Figure 5-9.
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Table 1

Nginx(Opt) 23106.41

Silo 26006.04

Go (Opt) 19450.23

Node-Cluster 16729.77

Nginx 13394.33

Go 11751.07

Node 8439.83

Ruby (Thin) 7273.85

Ruby (Puma) 3368.99

Python 
(Gevent)

1069.59
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Figure 5-9: HTTP performance in Silo compared to many other languages.
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5.6 Related Work

Coroutine frameworks in Java exist and, like Silo, convert JVM bytecode into a

continuation passing style. Examples include Kilim, Matthias’ Continuations Library,

Rife, and Javaflow [106, 67, 115, 110]. These frameworks work by pre-processing

JVM bytecode either as a separate build step or at runtime using a Java agent to

“instrument” classes as they are loaded by the JVM. While the approaches of these

frameworks are conceptually similar to Silo, Silo makes different engineering decisions:

it does not use exceptions to unwind the stack, it uses a hybrid trampoline to speed

up resuming, it includes a transformation style that reduce the overall code size, and

it avoids capturing the stack until absolutely necessary. These improvements were

necessary for Silo since, unlike the other approaches, Silo is a language and not a

library and needs to provide a construct that is more general purpose and works well

for many use cases without manual programmer intervention or tweaking.

Java’s cousin, C#, has support for “async” methods that can pause and resume.

C# async methods are not implemented at the VM-level but rather at the compiler

level. The C# compiler will transform methods into continuation passing style but

requires special syntax to call async methods and incurs a heavy runtime performance

penalty [70, 108].

Approaches have been suggested for modifying the JVM to support continuations

[81, 107]. However, none of these mechanisms have been adopted by the JVM spec nor

by any mainstream implementation of the JVM. Moreover, while these approaches

potentially offer much in terms of greater performance, it reduces the portability of

JVM code and may come at the expense of stability. Most notably, it means that code

can not run on mobile platforms like Android’s Dalvik or Oracle’s Mobile Application

Development Framework [39, 83].

Many other languages provide efficient implementations for coroutines including

Go, Haskell, Python (generators), Stackless Python, Racket, and Ruby (fibers) [90,

47, 121, 117, 93, 34]. Of these, Go and Haskell deserve special mention for addressing

the same underlying challenge as Silo — handling I/O efficiently. Like Silo, Go’s
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coroutines (named “goroutines”) implicitly yield whenever I/O takes place as does

the Mio framework written in Haskell [124]. The key distinction between Go, Haskell,

and Silo is that Silo targets the JVM and allows developers easy interoperability with

Java library.

It is worth mentioning key alternatives to coroutines. The main aim of coroutines

is to facilitate continuation passing style and allow programs to represent concurrent

logic without relying on heavy-weight operating system threads. Frameworks and

languages like Node.js, Akka, Netty, Haskell, Scala provide APIs and conventions to

facilitate “normal” continuation passing programming. Node is built on Javascript

and make heavy use of lexical closures. Moreover, many Javascript frameworks pro-

vide “promises” — a construct that allows closures to be “chained together” to fa-

cilitate many programming patterns [24]. Likewise, Java frameworks like Akka and

Netty provide non-blocking APIs built around anonymous classes and futures. Lastly,

Haskell’s Monads and Scala delimited continuations allow developers to chain callback

functions together in a manner similar to promises. These approaches are far simpler

to implement than Silo coroutines but can come at the expense of performance and

usability

Lastly, many low level techniques for implementing and using coroutines have been

proposed over the years [22, 75, 42, 117]. However, most of these are not applicable

on the JVM because of restrictions to memory access and control flow.
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Chapter 6

Case Study: Building a Real-Time

Multiplayer Game

Many new languages, despite incorporating interesting theoretical properties and

novel features, are not always useful in practice. Developers are often wary of new

languages because it is not always obvious how to use that language in real-world

scenarios. This chapter introduces a case study of using Silo to implement a real-

time online multiplayer game. The game demonstrates solutions to relevant tech-

nical challenges that are commonly found in applications today, including real-time

browser communication, HTTP APIs, template rendering, dependency management,

and workflow processing.
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6.1 Application Overview

To demonstrate Silo’s utility for building real-world applications, I created a real-time

online multiplayer game called CardStack. CardStack is a version of the popular card

game Speed.

In Speed, the objective of the game is to get rid of your cards as fast as possible.

Each player is dealt 20 cards of which only 5 can appear in the players hand at a

time. Two cards are placed in between the two players forming the start of two

“piles”. Players can place a card from their hand onto one of the piles if their card

is immediately one greater or less than the top card of the pile. Once a player plays

a card successfully he can draw from his reserve pile such that he has a maximum of

5 cards in his hand. Most importantly, there are no turns in this game. Players can

play cards as fast as they can and whoever can get rid of their cards first wins. Hence

the name, “Speed”.

CardStack is a browser-based game. Players create a new game and share a unique

link to that game with a friend they wish to challenge. Once both players connect,

the game begins. A player can select one of their cards using the number keys 1

through 5, re-arrange their cards using the up and down arrows, attempt to place a

card onto one of the piles using the left and right keys, and draw new cards using

tab. If a player cannot make a move they can hit the space bar which issues a request

to the other player. If the other player accepts the request, two random cards are

placed onto the middle piles. All moves are seen in real-time by both players making

the game fast paced and exciting. A screenshot of CardStack is show in Figure 6-1.

CardStack was chosen as a demo application for Silo because it has several char-

acteristics that are commonly found in real-world use-cases.

• The game is played inside of a standard Web browser, like many apps today.

• The game takes place in real-time and requires clients to be is constant commu-

nication with the server, which is increasingly common in modern applications.

• The game logic is not inherently trivial and requires more than the simple
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Figure 6-1: A screen shot of CardStack, a multiplayer game written in Silo.
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CRUD (create-read-update-delete) logic that is found in most Web applications

like blogs and forums.

• The game requires library support for common tasks like processing JSON,

parsing HTTP requests, and rendering HTML templates.

In this chapter, I first describe how to architect and organize an application like

CardStack using Silo. In the process I describe how many of Silo’s features proved

useful during CardStack’s implementation. Then, I discuss how a game like Silo is

deployed in different environments from privately owned dedicated servers to cloud

hosting environments like Heroku [44]. Lastly, I reflect on how Silo compares to other

languages that I am familiar with and avenues for future work to improve Silo’s short

comings.

6.2 System Architecture

The CardStack system consists of five types of services: the start up service, a registry

service that allows other services to refer to each other using proper names, a “front-

end” service which handles HTTP traffic, a “game-manager” service which allows

games to be created and manages their life cycle, and finally game “instance” services

which are created on-demand and represent individual games. A high level overview

of the system architecture is show in Figure 6-2.

6.2.1 Start Up Service

The start up service is fairly straight forward — it is the main entry point of the

application that is automatically created and executed by the Silo runtime. The

start up service simply spawns the other services and then blocks indefinitely. Many

Silo systems will have a start up service that serves a similar function. In some

instances the start up service will be more complex, for example, it could connect the

machine it is running on to a cluster of machines and spawn the services accordingly.
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Figure 6-2: CardStack’s architecture.

6.2.2 Front-End Service

The front-end service manages all HTTP traffic. It uses Silo’s built-in HTTP net-

working library to open a socket and register a callback function that is used to

process HTTP connections. Silo’s HTTP library will spawn a new actor that calls

the callback function for each HTTP connection. Since each connection is handled

by a different actor, developers are free to make blocking calls inside the callback

function without blocking the entire server. In fact, CardStack’s front-end service

can handle thousands of concurrent connections on modest hardware thanks to Silo’s

efficient implementation of coroutines.

The front-end service, like many popular Web frameworks today, establishes a

series of “routes”. When an HTTP request access a URI that matches a known

route, an associated function is invoked to process that request. Routes are specified

using regular expressions and a string to match against the request’s HTTP “verb”

(e.g. GET, POST, etc.). Normally, setting up and configuring these routes can be
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cumbersome and verbose. However, thanks to Silo’s support for macros, I was able

to create a special syntactic construct that greatly facilitate managing CardStack’s

routes.

If no route matches, the front-end server falls back on attempting to serve a static

file relative to a “root” location on the file system. Serving static files uses the

sendfile system call (if available) to send file data without copying data between

kernel-space and user-space. Many requests to the front-end service either require

server-side templates to be rendered or JSON payloads to be processed. Views are

rendered using Mustache templates [21] and JSON payloads are processed using the

Java org.json library. CardStack’s ability to leverage existing Java libraries greatly

facilitate implementation.

The front-end service often passes requests onto “back-end” services. For example

the /game/action and /game/stream routes send messages to the game manager and

game instances services and wait for a reply from these services that is forwarded back

to the client.

6.2.3 Game Manager Service

The game manager service maintains an internal list of active games. The front-end

service uses the game manager to create a new game or determine if a game exists or

is still active. The game manager also monitors all active games and automatically

shuts them down after a certain timeout threshold, which is set to 20 minutes of

inactivity.

6.2.4 Game Instance Service

The game instance service models individual games. Thanks to Silo’s concurrency

model, each game is run as a separate actor which greatly facilitate implementation

and making changes. The game instance service is essentially a state machine that

moves to different states in response to incoming actions. This allowed the game

logic to be represented in a natural manner rather than having to re-structure the
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application around the server’s HTTP event loop (like you would in Node.js, for

example).

CardStack implements the real-time features using HTTP long polling and a log-

oriented architecture. Every game action, for example selecting a card, is assigned

a sequence number and appended to a log. The game clients connect to the game

instance service (through the front-end service) and request all log entries from a

certain starting sequence number. The instance service replies back to the client

(again, through the front-end service). However, if the client requests a log entry that

hasn’t occurred yet, the game instance manager adds the client to a waiting list. Note

that this means the front-end service will need to “hold on” to the HTTP connection

for a long time, hence the name “long polling”. However, once again, thanks to Silo’s

actor implementation, this does not mean that the front-end service is incapable of

handling other requests in the mean time. Once a new entry is available, the game

instance appends it to the log and notifies the front-end service, which sends the data

back to all waiting clients and immediately closes the connection. The client processes

the log entires, increments its sequence number and immediately issue a new request

for new entires.

The game instance service maintains the log and other game state in memory and

receives actions from the front-end service. Since CardStack is real-time, the game

instance service stores all data in memory as using a database would likely introduce

unnecessary latency.

CardStack’s game logic is implemented as a “dumb client” application in which

the clients simply send messages to the server and respond to messages as they are

appended to the log. All of the actual game logic and rules are implemented and

coordinated from the server. This is quite common for most online multiplayer games.

6.2.5 Client Side Code

While CardStack’s game logic takes place on the server, it does incorporate a fair

amount of client-side code for rendering the UI, playing animations, and handling

input. CardStack’s client-side code make heavy use of Javascript and SVG and this
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code is located across various Javascript files, image files, and HTML template files

that are served as static files by the front-end service.

Javascript is used for capturing user-input, sending these inputs to the server,

and responding to actions that are appended to the game’s log. The CardStack’s

core Javascript functionality is thus fairly simple and consists of only around 300

lines of code.

The game is rendered almost entirely using SVG, a vector-based image format.

The game board is a pre-rendered SVG image made in Adobe Illustrator and has

placeholders with unique identifiers for important locations on the board. For exam-

ple, the board has a hidden placeholder box labeled player-card-active-1 which is

where the player’s first card should be positioned. During game play, the client-side

Javascript will place cards and render animations relative to the locations indicated

by these placeholders. As such, the client logic is void of any hard-coded positional

constants and the look, feel, and placement of game assets is dictated by the pre-

rendered SVG board image.

6.3 Code Review

6.3.1 Directory Organization

CardStack’s repository’s organization is shown below.

• app.silo This file is the main entry point of the application. This file includes

all of the other Silo source files so to compile and run CardStack, all that is

needed is to execute silo app.silo from the command line.

• cardstack/ This directory holds all Silo source files for CardStack. All of Card-

Stack’s constructs live in the cardstack package and the general convention is

to organize source files according to the package that they contain.

– cardstack/front-end.silo Contains the implementation of the front-end

service.
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– cardstack/manager.silo Contains the implementation of the game man-

ager service.

– cardstack/game.silo Contains the implementation of the game instance

service.

– cardstack/util.silo Contains random helper functions and types.

• lib/ This directory hold all dependencies that CardStack relies on. In this

case, two jar files exists: the standard Java JSON library and a Java template

library called Mustache. The silo command line utility automatically includes

the lib directory as part of the CLASSPATH when it executes a Silo program so

no further work is needed by the developer beyond just copying the necessary

jar files into this location. As Silo matures, more advanced build tools will likely

be created so that developers do not need to manually download jar files but

rather use a system that downloads dependencies automatically.

• views/ This directory holds all Mustache templates that CardStack needs to

render. Following the convention found in many other Web frameworks, the

views directory contains a special default.html file which is a layout template

that is used to maintain consistency across all pages on the site. Other files, for

example index.html are templates for individual pages that are inserted into a

layout template to yield to final HTML content that is sent back to the client.

• static/ This directory holds all static assets like images, JavaScript files, CSS

stylesheets, etc. All files that are placed in the static directory are publicly

accessible.

6.3.2 Code Patterns

CardStack’s codebase is organized around Silo packages. This is different from many

mainstream languages that organize code around types or objects. In CardStack, each

service lives in its own package. For example, all of the functions, types, and macros

for the front-end service are contained within the cardstack.frontend package. A
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notable exception is the cardstack.util package which does not logically contain a

service but rather a set of useful functions.

All service packages, by convention, have a function called start which enters the

service’s main execution loop in which the service waits for and processes messages

as they arrive. The structure of the loops generally looks like this:

1. type(Request {

2. sender : String

3. header : String

4. body : Object

5. })

6.

7. type(Response {

8. success : boolean

9. header : String

10. body : Object

11. })

12.

13. func(start() {

14. ...

15. while(true {

16. message : Object = actor.read()

17. if(message | instanceof(Request) {

18. request : Request = message | checkcast(Request)

19. if(request.header == "game.new" {

20. ...

21. } else {

22. // Ignore

23. })

24. })

25. })
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26. })

Note that the server loop always calls actor.read instead of selectively waiting

for particular types of messages. This is so the actor’s inbox does not fill up. During

the course of execution, it is common for old messages to be left behind (e.g. timeout

messages from old timers) and it is important to clean these messages up. This can

lead to undesirable situations because it would mean that pre-existing messages on the

inbox are lost. Thus, the start function is usually not invoked directly but spawned

as a new actor. In CardStack, all of the service’s start functions are spawned in the

app.silo source file.

The majority of the CardStack resides in the cardstack.game package which im-

plements the actual game logic. The game is modeled as an event loop that processes

game actions as they occur. A portion of the main game loop is shown below:

1. type(Game {

2. log : Vector

3. sequenceNumber : int

4. startingDeck : Vector

5. ...

6. })

7.

8. func(create(null => Game) {

9. // Creates a new game

10. ...

11. })

12.

13. func(dispatchAction(game : Game, request : Request => Game) {

14. // Process the request

15. // Return a new game with the updated state

16. ...

17. })
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18.

19. func(start() {

20. println("CardStack - Starting Game (" + actor.self() + ")")

21. game : Game = create()

22. ...

23. while(true {

24. message : Object = actor.read()

25. if(message | instanceof(Request) {

26. request : Request = message | checkcast(Request)

27.

28. if(request.header == "game.action" {

29. game = dispatchAction(game, request)

30. } else(...) {

31. ...

32. } else {

33. // Ignore

34. })

35. })

36. })

37. ...

38. })

There are a couple of important things to note about the code.

• First, all of the game state is encapsulated in a custom structure of type Game.

Since types in Silo are immutable, the functions that implement certain actions

cannot mutate the Game instance directly, but rather return a copy of the game

with the necessary modifications. Hence, the code above has to re-assign the

game variable to the return value from each function call. This approach is dif-

ferent from traditional object-oriented programming which encourages mutating

objects.
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• Second, the code is surprisingly void of synchronization primitives. Despite

the fact that the game is real-time and multiple games can be taking place

concurrently, each game instance is implicitly free of race conditions and other

unpleasantries of multi-threaded programming because the semantics of actors

in Silo dictate that they process a single message at a time. Thus, synchro-

nization does not need to be explicitly coordinated by user-level code. Instead,

developers can write code in a straight forward and natural manner without

interspersing application logic with awkward synchronization or control flow

constructs that are common to concurrent programming in other languages.

Lastly, CardStack makes use of a couple of macros that facilitate recurring tasks.

The best example of this is processing HTTP requests. A snippet of the main pro-

cessing loop from the front-end service is shown below:

1. func(httpHandler(r : Request, c : Connection, options : Map) {

2. ...

3. is(r, "post", '/game/([\w-]*)/action' {

4. try({

5. pattern : Pattern = Pattern.compile('/game/([\w-]*)/action')

6. matcher : Matcher = pattern#matcher(r.uri)#matches()

7. gameId : String = matcher#group(1)

8.

9. request : Map = fromJson(body)

10. actor.send(gameId, Request(actor.self(), "game.action", request))

11. response : Response = actor.read() | checkcast(Response)

12.

13. if(response.success {

14. connection.writeAll(c, 200, toJson(map.create("success" true)))

15. } else {

16. connection.writeAll(c, 500, toJson(map.create("success" false)))

17. })
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18. } catch(e : Exception) {

19. connection.writeAll(c, 400, null, "HTTP 400 Bad Request.")

20. })

21. })

22. ...

23. })

In this code snippet, the is construct is a simple macro that makes handling

HTTP requests drastically more natural. Its implementation is shown below:

1. transform(is(request, m, path, body) {

2. if(request.method#equalsIgnoreCase(m) &&

3. Pattern.matches(path, request.uri) {

4. body

5. return()

6. })

7. })

Macros like is are quite common in Silo applications. They are simple syntactic

constructs that are easy to understand, implement, and use. They make code more

readable, maintainable, and succinct. Small constructs like is are perfect examples

of good use cases for macros. While macros are extremely powerful, they can often be

hard to debug. Thus, developers are encouraged to keep macros simple and straight

forward, like CardStack’s is.

6.4 Deploying

CardStack has been deployed in two production environments: using dedicated pri-

vate servers and a cloud-based application platform. The term “cloud-based” may

be confusing. By “dedicated private server” I mean a box that you have complete

control over. In this case, it was a physical box running in a server closet but it

could just as easily been a virtualized server running on Amazon’s or Rackspace’s
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cloud. By “cloud-based application platform” I mean a service similar to Heroku

[44] in which developers do not have access to the actual box or underlying OS but

rather are given higher-level interfaces and tools for creating and managing applica-

tions. Generally, these services require developer to simply upload their code, specify

certain parameters such as the number and types of machine instances to use, and

the platform will take care of the rest. While these services are far more restrictive

(for example, Heroku does not allow application code to open arbitrary ports and

applications cannot save data directly to the file system) they tend to be easier to

use and offer different price points that are attractive to many smaller organizations

as opposed to the full-blown cloud computing solutions from the likes of Amazon.

6.4.1 Dedicated Private Servers

CardStack was first deployed on a privately owned server that was provisioned in

a typical networking server closet. The box had a clean installation of Ubuntu, a

popular Linux-based operating system. Installing Silo required no special packages

or system-wide configuration. The standard Silo distribution package was simply

copied to the server and the JRE (Java Runtime Environment) was downloaded from

Oracle’s Web site.

The distribution package contains a jar file with all of Silo’s runtime environment,

standard libraries, and dependencies. The distribution package also contains a helpful

silo.sh file (symlinked as just silo) which is a convenience script and “front-end”

into the jar file (using a small start-up shell script is common in most JVM languages

to configure JVM parameters like the CLASSPATH).

The JRE directory was simply copied into the Silo distribution directory as op-

posed to performing a system-wide installation using the OS’s package manager. By

default the silo.sh script will attempt to use a system-wide installation of Java but

if none is found, it will also see if a JRE is present locally within the distribution

directory. This is quite convenient because it allow the entirety of Silo’s installation

to be cleanly located within a single directory with no other system-level dependen-

cies, which is particularly helpful when deploying service-oriented systems which often
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requires provisioning and configuring multiple machines.

To run a Silo program, usually developers will execute silo some-file.silo

on the command line. While this works well for development and testing, it can

be awkward to use in production. Most of the time developers connect to pro-

duction machines remotely using SSH. The problem is that if developers run silo

file-some.silo and then close the SSH connection, the child-processes of the SSH

process will be terminated by the OS, which includes the Silo program. There are

many work arounds to this but most of them require platform-specific functionality

or heavy-weight solutions like using the screen command.

Silo provides a feature out of the box for running programs in the background

such that they do not terminate when the SSH connection is closed and develop-

ers can re-connect to the running program if they need to. All that is needed is to

run silo service start some-file.silo. The command will terminate immedi-

ately but will leave the Silo programming running in the background. It redirect’s

the program’s output and stores its process identifier to a “service directory” that

is named after the source file, for example some-file.service. To “connect” to

the running program and see its output, developers can run silo service monitor

some-file.silo. Finally, to stop the service, developers can run silo service

stop some-file.silo. This small convenience takes away a lot of the pain when

managing long-living systems running on multiple remote machines.

6.4.2 Cloud-Based Servers

CardStack was also successfully deployed on Heroku, a cloud-based application plat-

form. Heroku uses a Git-based workflow in which developers push their code to a

repository hosted on Heroku’s servers. When code is pushed, Heroku automatically

configures and runs the application. Developers are given a small but useful set of

controls to customize the behavior of their application including how many “servers”

to run the application.

Heroku supports a wide variety of different programming languages and frame-

works, including Ruby, Javascript (Node), Python, Java, and others. Unfortunately,
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it does not have explicit support for Silo. However, it is possible to embed the Silo

runtime and thus run Silo applications from inside another a “thin” Java application.

Thus, I exploit Heroku’s support for Java to run CardStack on their platform. This

also means that Silo can be easily used on any other platform and hosting environ-

ments that also support Java. Given Java’s wide spread adoption and appeal this

opens many options for Silo developers. Moreover, this also relevant to Silo’s core

design philosophy which was adamant about providing an efficient and easy to use

concurrency model without altering the JVM. If Silo did require changes to the JVM

it would be unlikely that Silo applications could be run on platforms like Heroku,

which tend to use standard installations of Java and the JVM.

Running a Silo application on Heroku is fairly straight forward. All application

dependencies are managed using the Maven build tool, which is common for Java-

based applications and simple to configure for Silo. In fact, future versions of Silo

will likely interoperate with Maven with ease just like build tools in other JVM-based

languages including Lein for Clojure, SBT for Scala, and Graddle for Groovy. Heroku

uses the concept for a Procfile that dictates which “processes” are created. The

Procfile for a Silo application looks like this:

web: java $JAVA_OPTS \

-cp target/classes:target/dependency/* \

silo.lang.Main app.silo

Once this Procfile was created, CardStack was pushed to Heroku and the appli-

cation ran without issue.

6.5 Comparative Evaluation and Lessons Learned

When I reflect on my experience with Silo, especially compared to other languages

and frameworks with which I am familiar, several thoughts come to mind.
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6.5.1 Positive Outcomes

Overall, my experience with Silo, despite being a new language, was mostly positive.

• Few External Dependencies. CardStack did not require any external or

system-level infrastructure. All of the application’s logic is cleanly self-contained

within the application’s source code and there is a single point of entry. In

particularly, CardStack did not require a standalone Web server like Nginx or

Apache like many Ruby, Python, and Javascript applications. Additionally,

CardStack does not need to reply on external OS features like cronjobs to per-

form recurring clean up tasks. All aspects of the system were modeled directly

in the application.

• Light Weight Frameworks. Many frameworks in languages like Ruby or

Python tend to be “heavy-weight” and require applications to be written ac-

cording to framework-level conventions or idioms. In Silo I did not feel the

need to have a heavy-weight Web framework. Despite being fairly complex,

CardStack did not require special purpose libraries for things like real-time

communication, HTTP handling, or recurring tasks. Which is quite common

in together languages and frameworks. For example, in Ruby, real-time com-

munication will typically require the use of Faye, HTTP handling will require

a Web framework like Rails or Sinatra, and recurring tasks will require a job

queue like Resque.

• Simple Build Process. Silo feels similar to a scripting language and does

not require complex build tools. To compile and run CardStack, only a single

command is needed: silo app.silo.

• Performance. When building CardStack, I never felt held back because of

Silo’s performance. This is especially true with Silo’s string processing (for

rendering HTML templates) and networking handling. Most of the time, appli-

cations written in languages like Ruby, Python, and Javascript use a separate

server like Nginx or Apache to host static files because the application servers
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written in, for example, Ruby are rarely performant. With Silo, this was not

necessary. Static files were hosted directly by CardStack’s application server

written in Silo and performance was never a reason. In fact, Silo’s HTTP per-

formance often matches that of Nginx and Apache and uses best practices like

the sendfile system call to minimizing buffer copying.

• Easy Installation. Installing Silo and running CardStack on multiple ma-

chines was simple. No system-wide installation or configuration was necessary

and no other dependencies were needed beyond a default installation of any

mainstream operating system (yes, this includes Windows). In particular, it is

important to note that Silo also does not require the typical dev tools (like gcc

and development header files) which are commonly required by languages like

Python and Ruby to install libraries that use C extensions to achieve reasonable

performance.

• Java Interoperability. Silo’s ability to interoperate with Java libraries was es-

sential for CardStack. In particular, CardStack uses the standard Java libraries

for JSON and Mustache templates that would have been time consuming and

difficult to re-implement.

6.5.2 Negative Outcomes

There were other points where Silo appeared in need for improvement.

• Type System. A common occurrence in CardStack was heavy use of the

checkcast special form which casts one type to another. Many of these in-

stances would be avoidable with a more powerful type system the incorporates

generics. This is useful not only for re-usable data structures like Vector and

Map but also utility functions and descriptive APIs.

• Slow Compilation. While Silo’s runtime performance was quite fast, its com-

pilation time leaves much to be desired. This was particularly annoying during
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CardStack’s development when the application was frequently stopped and re-

run. The slow compilation time is mostly attributable to little effort spent

optimizing the compiler and its reliance on Java reflection. Moreover, an un-

necessarily large amount of time is actually spent in the parser, which was

implemented using a standard parser generator rather being hand coded like

most languages.

• Library Support. While Silo’s interoperability was particularly useful, the

library support are less than ideal. Java libraries have APIs that feel unid-

iomatic.

• Immutability. Silo’s reliance on immutability has many beneficial properties

but it does require writing code in a manner that I, who previously was most fa-

miliar with object-oriented programming languages, found awkward. Thinking

in a “functional” manner requires subtly different approaches to many program-

ming tasks and takes some getting used to. For example, the game instance ser-

vice has many functions that manipulate the game’s state. In an object-oriented

programming language, these function would likely accept an argument of type

Game that is mutated directly. In Silo, the approach was to re-write these func-

tion to accept an argument of type Game and return a new Game as output.

While Silo’s approach in retrospect is obvious (and in fact has many beneficial

properties like being able to “roll-back” to a previous game state in the event of

an exception) it did require me to make a mental shift in how I would naturally

approach the problem.
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Chapter 7

Case Study: Renovating a Legacy

System

Software systems are subject to many corrosive forces over time and in need of regular

maintenance including applying software updates, upgrades and changes to hardware

configuration, and responding to bug fixes and feature requests. Developers often

need to be mindful of not only the upfront development cost of a system but also the

maintenance costs over time. This chapter presents a case study of how Silo was used

to renovate a long running legacy system. Silo provides elegant ways of addressing

the existing issues of this system while also providing mechanisms that would have

prevented many of these issues to begin with.
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7.1 Application Overview

WeFeelFine is an interactive art piece that continually crawls the Web for the phrases

that begin with “I feel” [58]. These phrases are inserted into a database, exposed by

an API, and visualized in a playful app running in the browser as a Java applet.

Ever since it was first launched in 2006, WeFeelFine has been subjected to many

corrosive forces and slowly but surely many parts of the system’s backend began to

fail. To breath new life into the project, WeFeelFine’s backend infrastructure was

re-implemented in Silo. This chapter describes the approach taken with Silo.

7.2 Previous Architecture

WeFeelFine’s original architecture consistent of many different components. A critical

part was the crawler that was implemented as a series of Perl scripts that executed

periodically as cronjobs. These crawlers would extract information from the Web,

insert relational data into a MySQL database, and save images to an NFS volume.

The MySQL data was queried by a series of Java servlets running on Apache Tomcat

as part of the API. Lastly, an Apache httpd server was used to serve static files as

well as the images for the API.

7.3 Issues

While WeFeelFine’s architecture began simple and clean, it evolved to be more com-

plex and eventually began to start breaking.

First, as the site grew, a single machine was unable to keep up with the load.

Thus, multiple Apache servers were deployed to handle the traffic. However, the

images from the crawl proved too large to replicate on each box. Thus, an NFS

server was introduced and mounted by all Web servers. While this would work in

theory it required careful operating system configuration to mount and use the NFS

volume. Additionally, network lag and failures would often cause the NFS clients

to get disconnected, which would cause the site to temporarily go down and require
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manual intervention. Lastly, to ensure proper security, the NFS volume was hosted on

a private subnet on virtualized network adapters which required configuration changes

to low-level parts of the OS network stack. Keeping the NFS infrastructure up,

running, and healthy required constant maintenance and changes in many different

places.

Second, as the data set of the crawl grew, it became necessary to shard the MySQL

database into multiple different tables. To do this, a new table was created for each

month. As can be imagined, this required major changes to the code. Moreover, since

the database was used in multiple places (by the crawler, by the Java servlets, and

by various utility scripts) significant updates were needed in many different locations.

Additionally, new infrastructure was necessary to automatically create the new tables

at specific times. This was done using cronjobs.

Third, eventually WeFeelFine needed to be moved from one data center to an-

other. This caused many failures. Much of the system depended on features of the

old infrastructure that were no longer available, for example, load balancing capabili-

ties, network address names, DNS entries, virtualized private LANs, etc. Moving the

system cause many parts of the the system to simply stop working. A huge amount

of time was necessary to rebuild this infrastructure and this proved difficult since key

information was scattered across various configuration files buried in many system

locations. Moreover, the system was moved onto new hardware running an updated

operating system. This caused problems with the crawlers since they relied on an out-

dated version of Perl that was no longer available. Additionally, many of the cronjobs

stopped working because of subtle OS differences and many of the deployment scripts

needed to be re-written.

While many of these issues could have been prevent with better planning, the fact

of the matter is that these issues are quite common in practice.
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7.4 Updated Architecture

WeFeelFine’ infrastructure was re-created in Silo as part of an effort to fix many of

the outstanding issues.

The following services were created:

• Start-Up. The service that starts all of the other services and the main starting

point of the system.

• Static Web Service. Hosts the static applet Web site HTML files. Multiple

instances of the Static Web Service run in parallel.

• API Service. Hosts the HTTP API that was previously running under Tom-

cat. However, unlike the Tomcat version, the images are hosted directly from

the API service rather than being sent by Apache. Many instances of the API

Service run in parallel.

• Load Balancer. Distributes traffic on several instances of the API service and

static Web service.

• Crawler. Periodically “wakes up” and creates and monitors many instances of

crawlers.

• Feelings Service. Expose an interface for creating and querying feelings. The

feelings service is used by the crawlers for inserting new feelings as well as the

API service. The feelings service uses MySQL behind the scenes but abstracts

all MySQL operations behind a unified interface that can be shared by the

crawler and the API.

• Image Service. Exposes an interface saving and reading raw image files. This

service is used primarily by the feelings service but was split off as its own

service to handle the shear size of the image data set as well as performing image

manipulation tasks like thumbnail generation, compression, and cropping.
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7.5 Discussion

The main issues with the old version of WeFeelFine was that it had many moving

parts that were glued together and that were hard to change. This is actually a

major challenge with many software system. The updated version with Silo not only

addressed the current issues but in many ways would have prevented them from

happening.

With Silo, all of the components of WeFeelFine lived inside of a single program

and did not rely on external infrastructure like cronjobs, NFS volumes, and mul-

tiple standalone servers from Tomcat to Apache httpd. Moreover, the all of these

components were tied together in an adaptive manner. The old architecture “hard

wired” many parts of the system (for example, the IP address of the machines) which

made migrating the application difficult. However, the Silo version could be moved

to another machine and data center as easily as copying the application source and

running it. There are still some configuration changes that would be necessary but

these configuration properties exist in a single place within the application source tree

rather than being scattered in various locations within the operating system.

Silo also allowed WeFeelFine to perform higher-level abstraction of re-usable func-

tionality. As a result, it facilitates making changes to the system and greater flexibility

with decision making. For example, the Feelings service still uses MySQL like before,

however it exposes a much higher API than what MySQL offers. Not only does this

make it easier for clients (e.g. the API service and the crawler service) to use but it

also gives the freedom to switch to another storage engine down the road. Moreover,

changes made to the MySQL installation (e.g. sharding tables) can be performed by

just updating the feelings service and not having to update every part of the sys-

tem that accesses MySQL. Similarly, the image service has the flexibility of choosing

the right storage technology for images, be that NFS, a key-value store, or a NoSQL

database. The flexibility and re-usability of services also allows a piece-meal approach

to software development. For example, the updated version of the crawler for We-

FeelFine still uses the old Perl code base by forking a new process Perl process when
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it is run. While this code will eventually be ported over to Silo natively, doing so

would have been somewhat time consuming. Thus, for the time being, the crawlers

re-use portions of the old Perl code. Once the new implementation is ready, it can

be “dropped” in place of the Perl code without changes anywhere else in the system

because the external interface provided by the crawler has not changed.

Lastly, Silo afforded great flexibility during the development process. For example,

during the implementation of the Feelings services, it became obvious that much of

its complexity involved handling the large number of images in the system. Thus, at

that point, the Feelings service was split into two: the Feelings service and the Image

service. The ability to easily break up complex services with ease not only makes

initial development easier, but it also discourages “hacky” solutions and facilitates

maintenance down the road.

By reducing the number of moving parts of the system, encapsulating complex

multi-machine systems into a single program, and providing greater flexibility and

opportunities for abstractions, a service-oriented language like Silo can reduce the

amount of cruft that is built up by a system over time.
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Chapter 8

Future Work

While Silo represents and usable and working language there are numerous avenues

for future work.

8.1 Language Enhancements

Silo’s initial design emphasized simplicity and orthogonality of language features. As

a result, certain features were avoided until the language was more mature. Of note,

generic programming capabilities and a richer type system are notably missing. Silo’s

type system provides little protection and expressivity when creating APIs. There are

many ideas being explored with languages like Haskell and Scala that are particularly

interesting for inclusion with Silo. In particular, it would be interesting to be able

to create a type system that provides strong type safety in the presence of unknown

messages that arrive on an actor’s inbox.

8.2 Development Tools

Beyond the Silo command line tools (the compiler, REPL, and simple package man-

ager) and a handful of text editor plugins, there is minimal tooling support for Silo.

While things like providing plugin for commons IDEs are naturally needed, there are

other unsolved research questions that need to be tackled, especially in the design of
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debuggers. Most debuggers work well with programs executing on a single machine

and that have simple control flows. However, Silo runs on multiple machines and the

control sequence leading to a bug can be hard to determine due to pervasiveness of

asynchronous message passing. Providing a mechanism to more easily identify and

reproduce bugs in a distributed program is currently an open research question.

Additionally, Silo programming model requires new thinking around testing. Sim-

ulating failures, network lag, temporary crashes, and byzantine faults are interesting

ideas to explore in the design of future test frameworks. Additionally, exploring

ways to perform automated testing on a distributed system could be very valuable in

practice.

8.3 Static Analysis

Silo offers a fundamentally different programming model compared to many main-

stream languages. As a result, it opens the door to many types of errors and de-

fects that developers are currently uncommon and not well known. Exploring static

analysis techniques for identifying and fixing bugs could be hugely beneficial. Many

existing static analysis techniques could be extended to address the semantics of Silo’s

unique runtime model. In particular, it would be interesting to see how static analysis

techniques can account for the possibility of a remote machine crashing and coming

back online, messages being indefinitely delayed, and unbounded non-determinism

of Silo’s actor semantics. Moreover, as privacy and network security continue to be

major points of interest, it would be existing to explore and be able to prove security

properties of protocols and programs written in Silo.

8.4 Use Cases

This thesis focused on Silo for the creation of, primarily, Web-based systems. How-

ever, Silo distribution and concurrency models are useful in many other domains as

well. In particular, it would be interesting to explore how Silo could fare as a language
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for massively parallel hardware like stream processors on GPUs. The actor seman-

tics should still be preserved in that environment and performance concerns could be

addressed using JNI and compiling a Silo-based DSL to Cilk or OpenCL code.

It would also be interesting to see how Silo fares as a language for client-side

development. Many of the challenges of server-side programming are shared with GUI

programming as well, for example, managing event-loops. It would be interesting to

explore for to create an actor-based UI library. This would open exciting opportunities

where a single Silo program can model a server-side service that supports client-side

apps running on the user’s local machine. Along these lines, it would be interesting

to explore compiling Silo to platforms other than the JVM to allow interoperability

with native UI frameworks. For example, compiling Silo to CLR on Windows, LLVM

for iOS and OS X, and Dalvik for Android.

Lastly, Silo could work really well as a research prototyping language for new

network protocols.
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Chapter 9

Conclusion

Service oriented programming has become increasingly relevant in recent years and

all indications show that it will be even more important in the future. In fact, I

would go so far as to say that service-oriented programming will eventually replace

object-oriented programming as the dominant programming paradigm.

In this dissertation we have explored the benefits and challenges of service-oriented

systems and seen how a new programming language, Silo, can streamline and facilitate

the design and implementation of such systems. Silo takes what I feel is a sensible

approach to language design and balances solutions to theoretical challenges while

addressing pragmatic needs of software developers. It provides a unified distributed

programming model, an easy-to-use construct for handling high concurrent workloads,

an extensible syntax, and the ability to natively interoperate with a rich ecosystem

of libraries and tools.

Over the years programming languages have focused on different themes: resource

management, concurrency, typing disciplines, expressivity, safety, etc. It is my hope

that distributed programming is soon added to that list. More than anything, Silo

provides a metaphor for distributed programming that emphasizes location trans-

parency and the ability to seamlessly execute a single logical program across many

independent computational devices. As multicore and streaming processors become

critical for achieving performance, and as compute clusters become essential for de-

livering scalability and reliability, and as end-users’ computing environments become
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more heterogeneous and distributed, such metaphors are essential for the builders of

tomorrow’s software systems.
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